Integral field spectroscopy with SINFONI of VVDS galaxies★ II. The mass-metallicity relation at 1.2 < z < 1.6

Aims. This work aims to provide a first insight into the mass-metall icity (MZ) relation of star-forming galaxies at redshift z�1: 4. To reach this goal, we present a first set of nine VVDS (VIMOS VLT Deep Survey) galaxies observed with the NIR integral-field spectrograph SINFONI on the VLT. Methods. Oxygen abundances are derived from empirical indicators based on the ratio between strong nebular emission-lines (H� , (Nii)6584A and (Sii)6717,6731AA). Stellar masses are deduced from SED fitting w ith Charlot & Bruzual (2003) population synthesis models, and star formation rates are derived from (Oii)3727A and Hemission-line luminosities. Results. We find a typical shift of 0: 2− 0: 4 dex towards lower metallicities for the z�1: 4 galaxies, compared to the MZ-relation in the local universe as derived from SDSS data. However, this small sample does not show any clear correlation between stellar mass and metallicity, unlike other larger samples at different redshift (z�0, z�0: 7, and z�2). Indeed, our galaxies lie just under the relation at z �2, and show a small trend for more massive galaxies to be more metallic (�0: 1 logarithmic slope). There are two possible explanations to account for these observations. F irst, our galaxies present higher specific star formation ra tes when compared to the global VVDS sample which could explain the particularly low metallicity of these galaxies as already shown in the SDSS sample. Second, inflow of metal-poor gas due to tidal interac tions could also explain the low metallicity of these galaxi es as three of these nine galaxies show clear signatures of merging in their velocity fields. Finally, we find that the metallicity of fou r galaxies is lower by�0: 2 to 0: 4 dex if we take into account the N/O abundance ratio in their metallicity estimate.

[1]  D. Osterbrock,et al.  Astrophysics of Gaseous Nebulae , 1976 .

[2]  R. Kennicutt,et al.  Oxygen Abundances in Nearby Dwarf Irregular Galaxies , 1989 .

[3]  C. Ramsbottom,et al.  Photodetachment cross sections for the 4So and 2Do bound states of the negative carbon ion , 1993 .

[4]  J. Huchra,et al.  H II regions and the abundance properties of spiral galaxies , 1994 .

[5]  Charles L. Bennett,et al.  High-Latitude Galactic Emission in the COBE Differential Microwave Radiometer 2 Year Sky Maps , 1996 .

[6]  O. Fèvre,et al.  The Canada-France Redshift Survey: The Luminosity Density and Star Formation History of the Universe to z ~ 1 , 1996, astro-ph/9601050.

[7]  A. Fruchter,et al.  HIGH-REDSHIFT GALAXIES IN THE HUBBLE DEEP FIELD : COLOUR SELECTION AND STAR FORMATION HISTORY TO Z 4 , 1996, astro-ph/9607172.

[8]  S. Sagan,et al.  Interstellar Abundance Gradients in NGC 2403: Comparison to M33 , 1997 .

[9]  New Light on the Search for Low-Metallicity Galaxies , 2001, astro-ph/0110356.

[10]  D. Calzetti The Dust Opacity of Star‐forming Galaxies , 2001, astro-ph/0109035.

[11]  S. Charlot,et al.  Nebular emission from star-forming galaxies , 2001, astro-ph/0101097.

[12]  G. Gavazzi,et al.  Spectrophotometry of Galaxies in the Virgo Cluster. I. The Star Formation History , 2002 .

[13]  Harvard-Smithsonian CfA,et al.  Using Strong Lines to Estimate Abundances in Extragalactic H II Regions and Starburst Galaxies , 2002, astro-ph/0206495.

[14]  Max Pettini,et al.  [O III] / [N II] as an abundance indicator at high redshift , 2004, astro-ph/0401128.

[15]  Simon D. M. White,et al.  Chemical enrichment of the intracluster and intergalactic medium in a hierarchical galaxy formation model , 2003, astro-ph/0310268.

[16]  J. Brinkmann,et al.  The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.

[17]  S. Maddox,et al.  The luminosity–metallicity relation in the local Universe from the 2dF Galaxy Redshift Survey , 2004 .

[18]  A comparative analysis of empirical calibrators for nebular metallicity , 2005, astro-ph/0506344.

[19]  A. Coil,et al.  Chemical Abundances of DEEP2 Star-forming Galaxies at z~1.0-1.5 , 2005, astro-ph/0509102.

[20]  M. Salvato,et al.  The Stellar Mass Function of Galaxies to z ~ 5 in the FORS Deep and GOODS-South Fields , 2004, astro-ph/0412167.

[21]  Near-Infrared Spectroscopy of 0.4 < z < 1.0 CFRS Galaxies: Oxygen Abundances, SFRs, and Dust , 2005, astro-ph/0508239.

[22]  Iap,et al.  The ages and metallicities of galaxies in the local universe , 2005, astro-ph/0506539.

[23]  H.-W. Chen,et al.  ApJ in press Preprint typeset using L ATEX style emulateapj v. 9/08/03 THE GEMINI DEEP DEEP SURVEY. VII. THE REDSHIFT EVOLUTION OF THE MASS-METALLICITY RELATION 1,2 , 2005 .

[24]  Christopher D. Martin,et al.  Spitzer View on the Evolution of Star-forming Galaxies from z = 0 to z ~ 3 , 2005, astro-ph/0505101.

[25]  Max Pettini,et al.  The Mass-Metallicity Relation at z≳2 , 2006, astro-ph/0602473.

[26]  C. Carollo,et al.  Oxygen Gas Abundances at z~1.4: Implications for the Chemical Evolution History of Galaxies , 2005, astro-ph/0511255.

[27]  France.,et al.  Significant evolution of the stellar mass-metallicity relation since z ~ 0.65 , 2005, astro-ph/0509866.

[28]  Clues for the origin of the fundamental metallicity relations – I. The hierarchical building up of the structure , 2006, astro-ph/0609243.

[29]  National Astronomical Observatory of Japan,et al.  Gas metallicity diagnostics in star-forming galaxies , 2006 .

[30]  J. Brinchmann,et al.  The VIMOS VLT Deep Survey. The assembly history of the stellar mass in galaxies: from the young to t , 2007, 0704.1600.

[31]  S. Bamford,et al.  The environmental dependence of the chemical properties of star-forming galaxies , 2007, 0709.3794.

[32]  R. Davé,et al.  The origin of the galaxy mass-metallicity relation and implications for galactic outflows , 2007, 0704.3100.

[33]  B. Garilli,et al.  The SWIRE-VVDS-CFHTLS surveys: stellar mass assembly over the last 10 Gyr. Evidence for a major build up of the red sequence between z = 2 and z = 1 , 2007, 0705.2438.

[34]  B. Garilli,et al.  The cosmic star formation rate evolution from z = 5 to z = 0 from the VIMOS VLT deep survey , 2006, astro-ph/0609005.

[35]  J. Brinchmann,et al.  Metallicities and Physical Conditions in Star-forming Galaxies at z ~ 1.0-1.5 , 2008, 0801.1670.

[36]  Hilo,et al.  Luminosity-metallicity relation for dIrr galaxies in the near-infrared , 2008, 0806.4618.

[37]  AMAZE - I. The evolution of the mass–metallicity relation at z $>$ 3 , 2008, 0806.2410.

[38]  S. Okamura,et al.  STAR FORMATION RATES AND METALLICITIES OF K-SELECTED STAR-FORMING GALAXIES AT z ∼ 2 , 2008, 0809.5100.

[39]  A. Mazure,et al.  The VIMOS VLT deep survey , 2008, 0903.0271.

[40]  L. Cowie,et al.  Accepted to The Astrophysical Journal Preprint typeset using L ATEX style emulateapj AN INTEGRATED PICTURE OF STAR FORMATION, METALLICITY EVOLUTION, AND GALACTIC STELLAR MASS ASSEMBLY 1 , 2022 .

[41]  A. McConnachie,et al.  GALAXY PAIRS IN THE SLOAN DIGITAL SKY SURVEY. I. STAR FORMATION, ACTIVE GALACTIC NUCLEUS FRACTION, AND THE LUMINOSITY/MASS–METALLICITY RELATION , 2008, 0803.0161.

[42]  A. Heavens,et al.  The cosmic evolution of metallicity from the SDSS fossil record , 2008, 0804.3091.

[43]  L. Kewley,et al.  Metallicity Calibrations and the Mass-Metallicity Relation for Star-forming Galaxies , 2008, 0801.1849.

[44]  F. Lamareille,et al.  Emission-lines calibrations of the star formation rate from the Sloan Digital Sky Survey , 2008, 0811.2420.

[45]  A. McConnachie,et al.  Clues to the Origin of the Mass-Metallicity Relation: Dependence on Star Formation Rate and Galaxy Size , 2007, 0711.4833.

[46]  J. Newman,et al.  The role of environment in the mass–metallicity relation , 2008, 0805.0308.

[47]  D. Lambas,et al.  The mass-metallicity relation of interacting galaxies , 2008, 0802.3904.

[48]  T. Contini,et al.  The impact of the nitrogen-to-oxygen ratio on ionized nebula diagnostics based on [N ii] emission lines , 2009, 0905.4621.

[49]  J. Brinchmann,et al.  Physical properties of galaxies and their evolution in the VIMOS VLT Deep Survey. II. Extending the mass-metallicity relation to the range z ≈ 0.89-1.24 , 2008, 0811.2085.

[50]  Integral field spectroscopy with SINFONI of VVDS galaxies I. Galaxy dynamics and mass assembly at 1.2 < z < 1.6 , 2009, 0903.1216.

[51]  F. Mannucci,et al.  LSD: Lyman-break galaxies Stellar populations and Dynamics – I. Mass, metallicity and gas at z∼ 3.1 , 2009, 0902.2398.

[52]  K. Stanek,et al.  OUTLIERS FROM THE MASS–METALLICITY RELATION. II. A SAMPLE OF MASSIVE METAL-POOR GALAXIES FROM SDSS , 2008, 0809.0896.

[53]  J. Brinchmann,et al.  Physical properties of galaxies and their evolution in the VIMOS VLT Deep Survey - I. The evolution of the mass-metallicity relation up to z ~ 0.9 , 2008, 0811.2053.

[54]  R. Davies,et al.  Astronomical Society of the Pacific Conference Series , 2010 .