Catalytic oxidation of Hg0 in flue gas over Ce modified TiO2 supported Co-Mn catalysts: Characterization, the effect of gas composition and co-benefit of NO conversion

[1]  W. Jian,et al.  Catalytic oxidation of benzene over MnOx/TiO2 catalysts and the mechanism study , 2015 .

[2]  F. Scala,et al.  Elemental mercury capture and oxidation by a regenerable manganese-based sorbent: The effect of gas composition , 2015 .

[3]  G. Zeng,et al.  Promotional effect of CeO2 modified support on V2O5–WO3/TiO2 catalyst for elemental mercury oxidation in simulated coal-fired flue gas , 2015 .

[4]  V. Castaño,et al.  Red shifts of the Eg(1) Raman mode of nanocrystalline TiO2:Er monoliths grown by sol–gel process , 2015 .

[5]  B. Shen,et al.  Simultaneous Removal of NO and Hg(0) from Flue Gas over Mn-Ce/Ti-PILCs. , 2015, Environmental science & technology.

[6]  Wei Cai,et al.  Solvent effects during the synthesis of Cr/Ce0.2Zr0.8O2 catalysts and their activities in NO oxidation , 2015 .

[7]  Honghong Yi,et al.  Low temperature catalytic oxidation of nitric oxide over the Mn–CoOx catalyst modified by nonthermal plasma , 2015 .

[8]  Wei Cai,et al.  Influence of the preparation method on the catalytic activity of Co/Zr1−xCexO2 for NO oxidation , 2015 .

[9]  Chang-feng Yan,et al.  Synthesis of mesoporous Co-Ce oxides catalysts by glycine-nitrate combustion approach for CO preferential oxidation reaction in excess H-2 , 2014 .

[10]  Wei Zhao,et al.  Focus on the modified CexZr1−xO2 with the rigid benzene-muti-carboxylate ligands and its catalysis in oxidation of NO , 2014 .

[11]  M. A. López-Antón,et al.  Effect of oxy-combustion flue gas on mercury oxidation. , 2014, Environmental science & technology.

[12]  G. Zeng,et al.  Catalytic oxidation of NO with O2 over FeMnOx/TiO2: Effect of iron and manganese oxides loading sequences and the catalytic mechanism study , 2014 .

[13]  Y. Teraoka,et al.  High NO oxidation catalytic activity on non-noble metal based cobalt-ceria catalyst for diesel soot oxidation , 2014 .

[14]  J. Xiang,et al.  Cobalt manganese oxides modified titania catalysts for oxidation of elemental mercury at low flue gas temperature , 2014 .

[15]  H. Gutberlet,et al.  Oxidation and reduction of mercury by SCR DeNOx catalysts under flue gas conditions in coal fired power plants , 2014 .

[16]  J. Wilcox,et al.  Heterogeneous mercury oxidation on au(111) from first principles. , 2013, Environmental science & technology.

[17]  P. Smirniotis,et al.  Simultaneous Removal of Elemental Mercury and NO from Flue Gas Using CeO2 Modified MnOx/TiO2 Materials , 2013 .

[18]  F. Scala,et al.  Characterization of a regenerable sorbent for high temperature elemental mercury capture from flue gas , 2013 .

[19]  J. Xiang,et al.  Catalytic oxidation of Hg0 by CuO–MnO2–Fe2O3/γ-Al2O3 catalyst , 2013 .

[20]  Y. Sabri,et al.  Support layer influencing sticking probability: Enhancement of mercury sorption capacity of gold , 2013 .

[21]  Hai-Long Li,et al.  Impact of SO2 on elemental mercury oxidation over CeO2–TiO2 catalyst , 2013 .

[22]  Tingyu Zhu,et al.  Mercury removal from coal combustion flue gas by modified fly ash. , 2013, Journal of environmental sciences.

[23]  J. Jurng,et al.  Low-temperature NO oxidation over Mn/TiO2 nanocomposite synthesized by chemical vapor condensation: Effects of Mn precursor on the surface Mn species , 2012 .

[24]  Kevin Brechtel,et al.  Effect of SCR operation variables on mercury speciation , 2012 .

[25]  J. Xiang,et al.  Preparation and characterization of Fe2O3–SiO2 composite and its effect on elemental mercury removal , 2012 .

[26]  P. Ning,et al.  Low-temperature catalytic oxidation of NO over Mn–Co–Ce–Ox catalyst , 2012 .

[27]  A. Miotello,et al.  Pulsed laser deposition of Co3O4 nanoparticles assembled coating: Role of substrate temperature to tailor disordered to crystalline phase and related photocatalytic activity in degradation of methylene blue , 2012 .

[28]  V. Balakotaiah,et al.  Experimental and kinetic modeling study of NO oxidation: Comparison of Fe and Cu-zeolite catalysts , 2012 .

[29]  Kyoungjin Lee,et al.  Mercury adsorption and oxidation in coal combustion and gasification processes , 2012 .

[30]  Hailong Li,et al.  Superior activity of MnOx-CeO2/TiO2 catalyst for catalytic oxidation of elemental mercury at low flue gas temperatures , 2012 .

[31]  P. Smirniotis,et al.  Ceria-Modified Manganese Oxide/Titania Materials for Removal of Elemental and Oxidized Mercury from Flue Gas , 2011 .

[32]  Yue Liu,et al.  Catalytic oxidation of gas-phase mercury over Co/TiO2 catalysts prepared by sol–gel method , 2011 .

[33]  K. He,et al.  Removal of gaseous elemental mercury over a CeO2–WO3/TiO2 nanocomposite in simulated coal-fired flue gas , 2011 .

[34]  Hai-Long Li,et al.  Oxidation and capture of elemental mercury over SiO2–TiO2–V2O5 catalysts in simulated low-rank coal combustion flue gas , 2011 .

[35]  J. Jia,et al.  Remarkable effect of the incorporation of titanium on the catalytic activity and SO2 poisoning resistance of magnetic Mn–Fe spinel for elemental mercury capture , 2011 .

[36]  R. Mason,et al.  Global mercury emissions to the atmosphere from anthropogenic and natural sources , 2010 .

[37]  Y. Seo,et al.  Effect of selective catalytic reactor on oxidation and enhanced removal of mercury in coal-fired power plants , 2010 .

[38]  J. P. Holgado,et al.  Complete n-hexane oxidation over supported Mn–Co catalysts , 2010 .

[39]  Yue Liu,et al.  Low-temperature selective catalytic reduction of NO with NH(3) over Mn-Ce oxides supported on TiO2 and Al2O3: a comparative study. , 2010, Chemosphere.

[40]  J. Jia,et al.  Catalytic oxidation of elemental mercury over the modified catalyst Mn/alpha-Al2O3 at lower temperatures. , 2010, Environmental science & technology.

[41]  J. Jia,et al.  Adsorption and Catalytic Oxidation of Gaseous Elemental Mercury in Flue Gas over MnOx/Alumina , 2009 .

[42]  T. Ioannides,et al.  VOC oxidation over CuO–CeO2 catalysts prepared by a combustion method , 2008 .

[43]  A. Presto,et al.  Noble Metal Catalysts for Mercury Oxidation in Utility Flue Gas: Gold, Palladium and Platinum Formulations , 2008 .

[44]  K. Powers,et al.  Development of silica/vanadia/titania catalysts for removal of elemental mercury from coal-combustion flue gas. , 2008, Environmental science & technology.

[45]  P. Smirniotis,et al.  Manganese Oxide/Titania Materials for Removal of NOx and Elemental Mercury from Flue Gas , 2008 .

[46]  Hong He,et al.  Selective catalytic reduction of NO by NH3 over a Ce/TiO2 catalyst , 2008 .

[47]  S. D. Kim,et al.  Co3O4 based catalysts for NO oxidation and NOx reduction in fast SCR process , 2008 .

[48]  N. Hutson,et al.  XAS and XPS characterization of mercury binding on brominated activated carbon. , 2007, Environmental science & technology.

[49]  K. Powers,et al.  Adsorption enhancement mechanisms of silica-titania nanocomposites for elemental mercury vapor removal. , 2005, Environmental science & technology.

[50]  Steven A. Benson,et al.  Status review of mercury control options for coal-fired power plants , 2003 .

[51]  Ataullah Khan,et al.  Structural Characterization of CeO2−TiO2 and V2O5/CeO2−TiO2 Catalysts by Raman and XPS Techniques , 2003 .

[52]  E. Granite,et al.  Novel Sorbents For Mercury Removal From Flue Gas , 2000 .

[53]  G. C. Allen,et al.  Characterisation of the spinels MxCo1−xFe2O4 (M = Mn, Fe or Ni) using X-ray photoelectron spectroscopy , 1996 .

[54]  J. Vázquez,et al.  Electrochemical behaviour of aqueous SO2 at Pt electrodes in acidic medium. A voltammetric and in situ Fourier transform IR study Part I. Oxidation of SO2 on Pt electrodes with sulphur-oxygen adsorbed species , 1995 .