Multiaxial fatigue life prediction model for notched specimen based on modified energy gradient and critical plane method

[1]  G. Lesiuk,et al.  Load path sensitivity and multiaxial fatigue life prediction of metals under non-proportional loadings , 2022, International Journal of Fatigue.

[2]  A. Carpinteri,et al.  The RED criterion for fatigue life assessment of metals under non-proportional loading , 2022, International Journal of Fatigue.

[3]  Linjun Xie,et al.  Multiaxial fatigue life prediction method considering notch effect and non-proportional hardening , 2022, Engineering Failure Analysis.

[4]  X. Qin,et al.  Multiaxial fatigue life prediction model based on an improved strain energy density criterion , 2022, International Journal of Pressure Vessels and Piping.

[5]  Shun‐Peng Zhu,et al.  Probabilistic fatigue assessment of notched components under size effect using generalized weakest-link model , 2022, International Journal of Fatigue.

[6]  F. Berto,et al.  Notch fatigue analysis and life assessment using an energy field intensity approach in 7050-T6 aluminium alloy under bending-torsion loading , 2022, International Journal of Fatigue.

[7]  Jianhui Liu,et al.  A Two-point Method for Multiaxial Fatigue Life Prediction , 2022, Acta Mechanica Solida Sinica.

[8]  Linjun Xie,et al.  A stress gradient-based fatigue life prediction method for multiaxial notched specimen considering additional hardening effect , 2021, International Journal of Pressure Vessels and Piping.

[9]  L. Jianhui,et al.  Evaluation of fatigue strength on multiaxial notched specimenss considering failure probability , 2021, International Journal of Fatigue.

[10]  B. Li,et al.  Total fatigue life prediction of TC4 titanium alloy based on surface notch , 2021, Engineering Failure Analysis.

[11]  N. Gao,et al.  Low-cycle fatigue behavior and life prediction of CP-Ti under non-proportional and multiaxial loading , 2021 .

[12]  S. Vantadori A Novel Multiaxial Strain-Based Criterion Considering Additional Cyclic Hardening , 2021, Materials.

[13]  Jing Li,et al.  A path-dependent multiaxial fatigue life estimation criterion for metals under various loading conditions , 2021 .

[14]  Shun‐Peng Zhu,et al.  Cyclic plastic zone modified critical distance theory for notch fatigue analysis of metals , 2020 .

[15]  Shun‐Peng Zhu,et al.  The effect of notch size on critical distance and fatigue life predictions , 2020 .

[16]  Shun‐Peng Zhu,et al.  Probabilistic fatigue assessment of notched components under size effect using critical distance theory , 2020 .

[17]  A. Fatemi,et al.  Multiaxial fatigue behavior of thermoplastics including mean stress and notch effects: Experiments and modeling , 2020 .

[18]  Y. Qiu,et al.  A Virtual-Strain-Energy-Density-Based Critical-Plane Criterion to Multiaxial Fatigue Life Prediction , 2020, Journal of Materials Engineering and Performance.

[19]  Ding Liao,et al.  Recent advances on notch effects in metal fatigue: A review , 2020 .

[20]  Shun-Peng Zhu,et al.  Stress-strain calculation and fatigue life assessment of V-shaped notches of turbine disk alloys , 2019 .

[21]  Shun-Peng Zhu,et al.  Energy field intensity approach for notch fatigue analysis , 2019, International Journal of Fatigue.

[22]  L. Susmel,et al.  Proportional/nonproportional constant/variable amplitude multiaxial notch fatigue: cyclic plasticity, non‐zero mean stresses, and critical distance/plane , 2019, Fatigue & Fracture of Engineering Materials & Structures.

[23]  Guian Qian,et al.  Multiaxial fatigue analysis of notched components using combined critical plane and critical distance approach , 2019, International Journal of Mechanical Sciences.

[24]  Z. Zhong,et al.  Use of an energy‐based/critical plane model to assess fatigue life under low‐cycle multiaxial cycles , 2019, Fatigue & Fracture of Engineering Materials & Structures.

[25]  A. Carpinteri,et al.  Novel non-linear relationship to evaluate the critical plane orientation , 2019, International Journal of Fatigue.

[26]  X. G. Wang,et al.  A new multiaxial fatigue model for life prediction based on energy dissipation evaluation , 2019, International Journal of Fatigue.

[27]  Shun‐Peng Zhu,et al.  A new critical plane-energy model for multiaxial fatigue life prediction of turbine disc alloys , 2018, Engineering Failure Analysis.

[28]  Yanbin Luo,et al.  Fatigue Life Prediction of Vortex Reducer Based on Stress Gradient , 2018, Journal of Mechanical Design.

[29]  Dianyin Hu,et al.  Evaluation of notch size effect on LCF life of TA19 specimens based on the stress gradient modified critical distance method , 2018 .

[30]  D. Shang,et al.  Multiaxial notch fatigue life prediction based on pseudo stress correction and finite element analysis under variable amplitude loading , 2018 .

[31]  Shun-Peng Zhu,et al.  Strain energy gradient-based LCF life prediction of turbine discs using critical distance concept , 2018, International Journal of Fatigue.

[32]  Shun-Peng Zhu,et al.  Evaluation and comparison of critical plane criteria for multiaxial fatigue analysis of ductile and brittle materials , 2018, International Journal of Fatigue.

[33]  José M. Martínez-Esnaola,et al.  Modelling multiaxial fatigue with a new combination of critical plane definition and energy-based criterion , 2018 .

[34]  Hanno Gottschalk,et al.  Combined Notch and Size Effect Modeling in a Local Probabilistic Approach for LCF , 2017, 1709.00320.

[35]  Vitor Anes,et al.  The damage scale concept and the critical plane approach , 2017 .

[36]  Ayhan Ince,et al.  A mean stress correction model for tensile and compressive mean stress fatigue loadings , 2017 .

[37]  José A.F.O. Correia,et al.  A probabilistic approach for multiaxial fatigue criteria , 2016 .

[38]  Luca Susmel,et al.  The Modified Manson–Coffin Curve Method to estimate fatigue lifetime under complex constant and variable amplitude multiaxial fatigue loading , 2016 .

[39]  Yong Li,et al.  A new approach of fatigue life prediction for metallic materials under multiaxial loading , 2015 .

[40]  Jing Li,et al.  Multiaxial fatigue life prediction for various metallic materials based on the critical plane approach , 2011 .

[41]  L. Susmel,et al.  Special Issue on Critical Distance Theories of Fracture , 2008 .

[42]  Yanyao Jiang,et al.  An experimental evaluation of three critical plane multiaxial fatigue criteria , 2007 .

[43]  David Taylor,et al.  A novel formulation of the theory of critical distances to estimate lifetime of notched components in the medium-cycle fatigue regime , 2007 .

[44]  M. V. Borodii,et al.  Additional cyclic strain hardening and its relation to material structure, mechanical characteristics, and lifetime , 2007 .

[45]  G. Qilafku,et al.  Multiaxial Fatigue Criterion for Notched Specimens Including the Effective Stress Range, Relative Stress Gradient, and Hydrostatic Pressure , 2001 .

[46]  Guy Pluvinage,et al.  Application of a new model proposal for fatigue life prediction on notches and key-seats , 1999 .

[47]  Xu Chen,et al.  A critical plane-strain energy density criterion for multiaxial low-cycle fatigue life under non-proportional loading , 1999 .

[48]  Daniel Kujawski,et al.  Plastic Strain Energy in Fatigue Failure , 1984 .

[49]  Huang Yuan,et al.  A continuum damage model for multi-axial low cycle fatigue of porous sintered metals based on the critical plane concept , 2017 .

[50]  Ayhan Ince,et al.  Innovative computational modeling of multiaxial fatigue analysis for notched components , 2016 .

[51]  G. Pluvinage,et al.  NOTCH EFFECTS IN FATIGUE AND FRACTURE , 2001 .

[52]  Takamoto Itoh,et al.  Nonproportional Low Cycle Fatigue of 6061 Aluminum Alloy under 14 Strain Paths , 1999 .

[53]  Grzegorz Glinka,et al.  A MULTIAXIAL FATIGUE STRAIN ENERGY DENSITY PARAMETER RELATED TO THE CRITICAL FRACTURE PLANE , 1995 .

[54]  J. Morrow Cyclic Plastic Strain Energy and Fatigue of Metals , 1965 .