Graph analysis of functional brain networks: practical issues in translational neuroscience

The brain can be regarded as a network: a connected system where nodes, or units, represent different specialized regions and links, or connections, represent communication pathways. From a functional perspective, communication is coded by temporal dependence between the activities of different brain areas. In the last decade, the abstract representation of the brain as a graph has allowed to visualize functional brain networks and describe their non-trivial topological properties in a compact and objective way. Nowadays, the use of graph analysis in translational neuroscience has become essential to quantify brain dysfunctions in terms of aberrant reconfiguration of functional brain networks. Despite its evident impact, graph analysis of functional brain networks is not a simple toolbox that can be blindly applied to brain signals. On the one hand, it requires the know-how of all the methodological steps of the pipeline that manipulate the input brain signals and extract the functional network properties. On the other hand, knowledge of the neural phenomenon under study is required to perform physiologically relevant analysis. The aim of this review is to provide practical indications to make sense of brain network analysis and contrast counterproductive attitudes.

[1]  Rodrigo Quian Quiroga,et al.  Nonlinear multivariate analysis of neurophysiological signals , 2005, Progress in Neurobiology.

[2]  M. Hallett,et al.  Identifying true brain interaction from EEG data using the imaginary part of coherency , 2004, Clinical Neurophysiology.

[3]  Jukka-Pekka Onnela,et al.  Community Structure in Time-Dependent, Multiscale, and Multiplex Networks , 2009, Science.

[4]  A. Cichocki,et al.  Cortical functional connectivity networks in normal and spinal cord injured patients: Evaluation by graph analysis , 2007, Human brain mapping.

[5]  Bryon A. Mueller,et al.  Altered resting state complexity in schizophrenia , 2012, NeuroImage.

[6]  Marcus Kaiser,et al.  A tutorial in connectome analysis: Topological and spatial features of brain networks , 2011, NeuroImage.

[7]  Yufeng Zang,et al.  Functional connectivity as revealed by independent component analysis of resting-state fNIRS measurements , 2010, NeuroImage.

[8]  Febo Cincotti,et al.  Multimodal integration of high-resolution EEG and functional magnetic resonance imaging data: a simulation study , 2003, NeuroImage.

[9]  Habib Benali,et al.  Partial correlation for functional brain interactivity investigation in functional MRI , 2006, NeuroImage.

[10]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[11]  F. Mazzocchi Complexity in biology , 2008, EMBO reports.

[12]  Timoteo Carletti,et al.  The Stochastic Evolution of a Protocell: The Gillespie Algorithm in a Dynamically Varying Volume , 2011, Comput. Math. Methods Medicine.

[13]  Vangelis Sakkalis,et al.  Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG , 2011, Comput. Biol. Medicine.

[14]  Jan Warnking,et al.  Impaired cerebral vasoreactivity to CO2 in Alzheimer's disease using BOLD fMRI , 2011, NeuroImage.

[15]  Richard M. Leahy,et al.  A note on the phase locking value and its properties , 2013, NeuroImage.

[16]  R. Cameron Craddock,et al.  Clinical applications of the functional connectome , 2013, NeuroImage.

[17]  Liang Wang,et al.  Impaired Efficiency of Functional Networks Underlying Episodic Memory-for-Context in Schizophrenia , 2010, The Journal of Neuroscience.

[18]  Thomas E. Nichols,et al.  Brain Network Analysis: Separating Cost from Topology Using Cost-Integration , 2011, PloS one.

[19]  V Latora,et al.  Efficient behavior of small-world networks. , 2001, Physical review letters.

[20]  E. Bullmore,et al.  Human brain networks in health and disease , 2009, Current opinion in neurology.

[21]  Timothy O. Laumann,et al.  Methods to detect, characterize, and remove motion artifact in resting state fMRI , 2014, NeuroImage.

[22]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[23]  Yong He,et al.  Graph theoretical modeling of brain connectivity. , 2010, Current opinion in neurology.

[24]  Aapo Hyvärinen,et al.  Validating the independent components of neuroimaging time series via clustering and visualization , 2004, NeuroImage.

[25]  Olaf Sporns,et al.  Weight-conserving characterization of complex functional brain networks , 2011, NeuroImage.

[26]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[27]  Vito Latora,et al.  Non-parametric resampling of random walks for spectral network clustering , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Stephen C. Strother,et al.  PHYCAA+: An optimized, adaptive procedure for measuring and controlling physiological noise in BOLD fMRI , 2013, NeuroImage.

[29]  Paul J. Laurienti,et al.  Comparison of characteristics between region-and voxel-based network analyses in resting-state fMRI data , 2010, NeuroImage.

[30]  Xiangyu Long,et al.  Functional segmentation of the brain cortex using high model order group PICA , 2009, Human brain mapping.

[31]  Peter Guttorp,et al.  Wavelet analysis of covariance with application to atmospheric time series , 2000 .

[32]  M. Fox,et al.  Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .

[33]  A. Vázquez,et al.  Network clustering coefficient without degree-correlation biases. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  Katarzyna J. Blinowska,et al.  Determination of EEG activity propagation: pair-wise versus multichannel estimate , 2004, IEEE Transactions on Biomedical Engineering.

[35]  Dennis D. Spencer,et al.  Curing epilepsy: Progress and future directions , 2009, Epilepsy & Behavior.

[36]  Lutz Jäncke,et al.  The Problem of Thresholding in Small-World Network Analysis , 2013, PloS one.

[37]  E. Bullmore,et al.  Functional Connectivity and Brain Networks in Schizophrenia , 2010, The Journal of Neuroscience.

[38]  Jens Timmer,et al.  Handbook of Time Series Analysis: Introduction and Overview , 2006 .

[39]  Martin Wolf,et al.  A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology , 2014, NeuroImage.

[40]  Karl J. Friston,et al.  Structural and Functional Brain Networks: From Connections to Cognition , 2013, Science.

[41]  Habib Benali,et al.  CORSICA: correction of structured noise in fMRI by automatic identification of ICA components. , 2007, Magnetic resonance imaging.

[42]  Richard M. Leahy,et al.  Electromagnetic brain mapping , 2001, IEEE Signal Process. Mag..

[43]  Luiz A. Baccalá,et al.  Partial directed coherence: a new concept in neural structure determination , 2001, Biological Cybernetics.

[44]  Carlos H. Muravchik,et al.  Effects of geometric head model perturbations on the EEG forward and inverse problems , 2006, IEEE Transactions on Biomedical Engineering.

[45]  John Ashburner,et al.  A fast diffeomorphic image registration algorithm , 2007, NeuroImage.

[46]  Alexander Hammers,et al.  Three‐dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe , 2003, Human brain mapping.

[47]  Daniel Chicharro,et al.  Measuring multiple spike train synchrony , 2009, Journal of Neuroscience Methods.

[48]  Jari Saramäki,et al.  Temporal Networks , 2011, Encyclopedia of Social Network Analysis and Mining.

[49]  Laura Astolfi,et al.  Cortical Network Dynamics during Foot Movements , 2008, Neuroinformatics.

[50]  Lotfi Senhadji,et al.  Quantitative evaluation of linear and nonlinear methods characterizing interdependencies between brain signals. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[52]  A. Fingelkurts,et al.  Functional connectivity in the brain—is it an elusive concept? , 2005, Neuroscience & Biobehavioral Reviews.

[53]  Massimiliano Zanin,et al.  Optimizing Functional Network Representation of Multivariate Time Series , 2012, Scientific Reports.

[54]  Edward T. Bullmore,et al.  Network-based statistic: Identifying differences in brain networks , 2010, NeuroImage.

[55]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[56]  Cornelis J Stam,et al.  Graph theoretical analysis of complex networks in the brain , 2007, Nonlinear biomedical physics.

[57]  A. Fagan,et al.  Functional connectivity and graph theory in preclinical Alzheimer's disease , 2014, Neurobiology of Aging.

[58]  Maurizio Corbetta,et al.  Why use a connectivity-based approach to study stroke and recovery of function? , 2012, NeuroImage.

[59]  Edward T. Bullmore,et al.  Efficiency and Cost of Economical Brain Functional Networks , 2007, PLoS Comput. Biol..

[60]  K. Kendrick,et al.  Partial Granger causality—Eliminating exogenous inputs and latent variables , 2008, Journal of Neuroscience Methods.

[61]  G. Fink,et al.  Reorganization of cerebral networks after stroke: new insights from neuroimaging with connectivity approaches , 2011, Brain : a journal of neurology.

[62]  A. Hero,et al.  Large-Scale Correlation Screening , 2011, 1102.1204.

[63]  C. Fiebach,et al.  Predicting errors from reconfiguration patterns in human brain networks , 2012, Proceedings of the National Academy of Sciences.

[64]  Dost Öngür,et al.  Anticorrelations in resting state networks without global signal regression , 2012, NeuroImage.

[65]  Silke Dodel,et al.  Functional connectivity by cross-correlation clustering , 2002, Neurocomputing.

[66]  Sungho Tak,et al.  Statistical analysis of fNIRS data: A comprehensive review , 2014, NeuroImage.

[67]  Marc Barthelemy,et al.  Spatial Networks , 2010, Encyclopedia of Social Network Analysis and Mining.

[68]  E. Bullmore,et al.  Wavelets and functional magnetic resonance imaging of the human brain , 2004, NeuroImage.

[69]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[70]  Kevin Murphy,et al.  Resting-state fMRI confounds and cleanup , 2013, NeuroImage.

[71]  Noah D. Brenowitz,et al.  Integrated strategy for improving functional connectivity mapping using multiecho fMRI , 2013, Proceedings of the National Academy of Sciences.

[72]  Wei Liao,et al.  Nonlinear connectivity by Granger causality , 2011, NeuroImage.

[73]  O. Sporns Networks of the Brain , 2010 .

[74]  Fei-Fei Li,et al.  Exploring Functional Connectivities of the Human Brain using Multivariate Information Analysis , 2009, NIPS.

[75]  Danielle S Bassett,et al.  Brain graphs: graphical models of the human brain connectome. , 2011, Annual review of clinical psychology.

[76]  J. Schoffelen,et al.  Source connectivity analysis with MEG and EEG , 2009, Human brain mapping.

[77]  E. Bullmore,et al.  Fractal connectivity of long-memory networks. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[78]  C. J. Stam,et al.  Functional connectivity patterns of human magnetoencephalographic recordings: a ‘small-world’ network? , 2004, Neuroscience Letters.

[79]  J. Wikswo,et al.  Spatial Filter Approach for Evaluation of the Surface Laplacian of the Electroencephalogram and Magnetoencephalogram , 2001, Annals of Biomedical Engineering.

[80]  Louis M. Pecora,et al.  Detecting Coupling in the Presence of Noise and Nonlinearity , 2006 .

[81]  Michael Breakspear,et al.  Graph analysis of the human connectome: Promise, progress, and pitfalls , 2013, NeuroImage.

[82]  G. Carter Coherence and time delay estimation , 1987, Proceedings of the IEEE.

[83]  Viola Priesemann,et al.  Measuring Information-Transfer Delays , 2013, PloS one.

[84]  Danielle Smith Bassett,et al.  Small-World Brain Networks , 2006, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[85]  M. Besserve,et al.  Towards a proper estimation of phase synchronization from time series , 2006, Journal of Neuroscience Methods.

[86]  Marcus Kaiser,et al.  Integrating Temporal and Spatial Scales: Human Structural Network Motifs Across Age and Region of Interest Size , 2011, Front. Neuroinform..

[87]  Manfred G Kitzbichler,et al.  Cognitive Effort Drives Workspace Configuration of Human Brain Functional Networks , 2011, The Journal of Neuroscience.

[88]  Paul J. Laurienti,et al.  A New Measure of Centrality for Brain Networks , 2010, PloS one.

[89]  Efstathios D. Gennatas,et al.  Predicting Regional Neurodegeneration from the Healthy Brain Functional Connectome , 2012, Neuron.

[90]  Dimitri Van De Ville,et al.  Classifying Connectivity Graphs Using Graph and Vertex Attributes , 2011, 2011 International Workshop on Pattern Recognition in NeuroImaging.

[91]  G. Cecchi,et al.  Scale-free brain functional networks. , 2003, Physical review letters.

[92]  M. Rosenblum,et al.  Detecting direction of coupling in interacting oscillators. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[93]  Karl J. Friston,et al.  Evaluation of different measures of functional connectivity using a neural mass model , 2004, NeuroImage.

[94]  L. da F. Costa,et al.  Characterization of complex networks: A survey of measurements , 2005, cond-mat/0505185.

[95]  Daniel Rueckert,et al.  Automatic segmentation of brain MRIs of 2-year-olds into 83 regions of interest , 2008, NeuroImage.

[96]  Laura Astolfi,et al.  Redundancy in Functional Brain Connectivity from EEG Recordings , 2012, Int. J. Bifurc. Chaos.

[97]  Edward T. Bullmore,et al.  Age-related changes in modular organization of human brain functional networks , 2009, NeuroImage.

[98]  M. Young,et al.  Computational analysis of functional connectivity between areas of primate cerebral cortex. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[99]  Randy L Buckner,et al.  Human functional connectivity: New tools, unresolved questions , 2010, Proceedings of the National Academy of Sciences.

[100]  Edward T. Bullmore,et al.  A simple view of the brain through a frequency-specific functional connectivity measure , 2008, NeuroImage.

[101]  J Martinerie,et al.  Complex modular structure of large-scale brain networks. , 2009, Chaos.

[102]  Arthur W. Toga,et al.  Automatic independent component labeling for artifact removal in fMRI , 2008, NeuroImage.

[103]  Sandra Sudarsky,et al.  Creating Group-Level Functionally-Defined Atlases for Diagnostic Classification , 2013, 2013 International Workshop on Pattern Recognition in Neuroimaging.

[104]  Celso Grebogi,et al.  International Journal of Bifurcation and Chaos: Editorial , 2008 .

[105]  Scott T. Grafton,et al.  Dynamic reconfiguration of human brain networks during learning , 2010, Proceedings of the National Academy of Sciences.

[106]  Mary E. Meyerand,et al.  The effect of scan length on the reliability of resting-state fMRI connectivity estimates , 2013, NeuroImage.

[107]  N. Geschwind Disconnexion syndromes in animals and man. I. , 1965, Brain : a journal of neurology.

[108]  Olaf Sporns,et al.  Complex network measures of brain connectivity: Uses and interpretations , 2010, NeuroImage.

[109]  Andreas Daffertshofer,et al.  Comparing Brain Networks of Different Size and Connectivity Density Using Graph Theory , 2010, PloS one.

[110]  Mark W. Woolrich,et al.  Task-driven ICA feature generation for accurate and interpretable prediction using fMRI , 2012, NeuroImage.

[111]  Edward T. Bullmore,et al.  Schizophrenia, neuroimaging and connectomics , 2012, NeuroImage.

[112]  R Quian Quiroga,et al.  Performance of different synchronization measures in real data: a case study on electroencephalographic signals. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[113]  M Valencia,et al.  Dynamic small-world behavior in functional brain networks unveiled by an event-related networks approach. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[114]  Robert Oostenveld,et al.  An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias , 2011, NeuroImage.

[115]  L. Stone,et al.  Generating uniformly distributed random networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[116]  Benjamin Thyreau,et al.  Discriminative Network Models of Schizophrenia , 2009, NIPS.

[117]  J. Martinerie,et al.  The brainweb: Phase synchronization and large-scale integration , 2001, Nature Reviews Neuroscience.

[118]  Edward T. Bullmore,et al.  Network Scaling Effects in Graph Analytic Studies of Human Resting-State fMRI Data , 2010, Front. Syst. Neurosci..

[119]  John Suckling,et al.  A wavelet method for modeling and despiking motion artifacts from resting-state fMRI time series , 2014, NeuroImage.

[120]  Yong He,et al.  Disrupted small-world networks in schizophrenia. , 2008, Brain : a journal of neurology.

[121]  Edward T. Bullmore,et al.  On the use of correlation as a measure of network connectivity , 2012, NeuroImage.

[122]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[123]  R. Yuste,et al.  The Brain Activity Map Project and the Challenge of Functional Connectomics , 2012, Neuron.

[124]  Nicholas Ayache,et al.  A Generative Model for Brain Tumor Segmentation in Multi-Modal Images , 2010, MICCAI.

[125]  Dimitri Van De Ville,et al.  Total activation: fMRI deconvolution through spatio-temporal regularization , 2013, NeuroImage.

[126]  Olivier J. J. Michel,et al.  On directed information theory and Granger causality graphs , 2010, Journal of Computational Neuroscience.

[127]  Fabio Babiloni,et al.  Node Accessibility in Cortical Networks During Motor Tasks , 2013, Neuroinformatics.

[128]  Saeid Sanei,et al.  Fundamentals of EEG Signal Processing , 2013 .

[129]  Martijn P. van den Heuvel,et al.  The parcellation-based connectome: Limitations and extensions , 2013, NeuroImage.

[130]  J. Wolpaw,et al.  Mu and Beta Rhythm Topographies During Motor Imagery and Actual Movements , 2004, Brain Topography.

[131]  D. Schacter,et al.  The Brain's Default Network , 2008, Annals of the New York Academy of Sciences.

[132]  Lucas Antiqueira,et al.  Estimating complex cortical networks via surface recordings—A critical note , 2010, NeuroImage.

[133]  J. Palva,et al.  New vistas for α-frequency band oscillations , 2007, Trends in Neurosciences.

[134]  Paul J. Laurienti,et al.  Defining nodes in complex brain networks , 2013, Front. Comput. Neurosci..

[135]  Daniel L. Rubin,et al.  Network Analysis of Intrinsic Functional Brain Connectivity in Alzheimer's Disease , 2008, PLoS Comput. Biol..

[136]  Kevin Murphy,et al.  The impact of global signal regression on resting state correlations: Are anti-correlated networks introduced? , 2009, NeuroImage.

[137]  Fabrice Bartolomei,et al.  Graph theoretical analysis of structural and functional connectivity MRI in normal and pathological brain networks , 2010, Magnetic Resonance Materials in Physics, Biology and Medicine.

[138]  Cornelis J. Stam,et al.  Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain , 2008, NeuroImage.

[139]  R. Mantegna Hierarchical structure in financial markets , 1998, cond-mat/9802256.

[140]  F. Varela,et al.  Measuring phase synchrony in brain signals , 1999, Human brain mapping.

[141]  Jonathan D. Power,et al.  Evidence for Hubs in Human Functional Brain Networks , 2013, Neuron.

[142]  V Latora,et al.  Small-world behavior in time-varying graphs. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[143]  Michael Marx,et al.  A novel approach for global noise reduction in resting-state fMRI: APPLECOR , 2013, NeuroImage.

[144]  Rupert Lanzenberger,et al.  Correlations and anticorrelations in resting-state functional connectivity MRI: A quantitative comparison of preprocessing strategies , 2009, NeuroImage.

[145]  Karl J. Friston Functional and Effective Connectivity: A Review , 2011, Brain Connect..

[146]  J. Rapoport,et al.  The anatomical distance of functional connections predicts brain network topology in health and schizophrenia. , 2013, Cerebral cortex.

[147]  Bin He,et al.  Graph analysis of epileptogenic networks in human partial epilepsy , 2011, Epilepsia.

[148]  Edward T. Bullmore,et al.  Whole-brain anatomical networks: Does the choice of nodes matter? , 2010, NeuroImage.

[149]  Edward T. Bullmore,et al.  Disrupted Modularity and Local Connectivity of Brain Functional Networks in Childhood-Onset Schizophrenia , 2010, Front. Syst. Neurosci..

[150]  E. Bullmore,et al.  A Resilient, Low-Frequency, Small-World Human Brain Functional Network with Highly Connected Association Cortical Hubs , 2006, The Journal of Neuroscience.

[151]  Nenad Trinajstić,et al.  Isomer discrimination by topological information approach , 1981 .

[152]  Pierpaolo Degano,et al.  A Computational Approach to the Functional Screening of Genomes , 2007, PLoS Comput. Biol..

[153]  R. Muirhead Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.

[154]  Massimo Marchiori,et al.  Economic small-world behavior in weighted networks , 2003 .

[155]  Shilpa Chakravartula,et al.  Complex Networks: Structure and Dynamics , 2014 .

[156]  M. Sigman,et al.  A big-world network in ASD: Dynamical connectivity analysis reflects a deficit in long-range connections and an excess of short-range connections , 2010, Neuropsychologia.

[157]  M. Corbetta,et al.  Large-scale cortical correlation structure of spontaneous oscillatory activity , 2012, Nature Neuroscience.

[158]  E. Bullmore,et al.  Neurophysiological architecture of functional magnetic resonance images of human brain. , 2005, Cerebral cortex.

[159]  E. Bullmore,et al.  Hubs of brain functional networks are radically reorganized in comatose patients , 2012, Proceedings of the National Academy of Sciences.

[160]  Zhifeng Liang,et al.  Anticorrelated resting-state functional connectivity in awake rat brain , 2012, NeuroImage.

[161]  Vinod Menon,et al.  Functional connectivity in the resting brain: A network analysis of the default mode hypothesis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[162]  Simon B. Eickhoff,et al.  An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data , 2013, NeuroImage.

[163]  Hang Joon Jo,et al.  Trouble at Rest: How Correlation Patterns and Group Differences Become Distorted After Global Signal Regression , 2012, Brain Connect..

[164]  P. Phillips,et al.  Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? , 1992 .

[165]  Claire Wyart,et al.  Let there be light: zebrafish neurobiology and the optogenetic revolution , 2011, Reviews in the neurosciences.

[166]  Wenjun Li,et al.  A method to determine the necessity for global signal regression in resting‐state fMRI studies , 2012, Magnetic resonance in medicine.

[167]  S. Achard,et al.  fMRI functional connectivity estimators robust to region size bias , 2011, 2011 IEEE Statistical Signal Processing Workshop (SSP).

[168]  Britton Chance,et al.  Transcranial optical path length in infants by near-infrared phase-shift spectroscopy , 2005, Journal of Clinical Monitoring.

[169]  Antonio Politi,et al.  Measuring spike train synchrony , 2007, Journal of Neuroscience Methods.

[170]  Reto Meuli,et al.  Adaptive Strategy for the Statistical Analysis of Connectomes , 2011, PloS one.

[171]  J Martinerie,et al.  Functional modularity of background activities in normal and epileptic brain networks. , 2008, Physical review letters.

[172]  Febo Cincotti,et al.  Multiscale topological properties of functional brain networks during motor imagery after stroke , 2013, NeuroImage.

[173]  Koenraad Van Leemput,et al.  Automated segmentation of multiple sclerosis lesions by model outlier detection , 2001, IEEE Transactions on Medical Imaging.

[174]  Abraham Z. Snyder,et al.  Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion , 2012, NeuroImage.

[175]  Vince D. Calhoun,et al.  A method for functional network connectivity among spatially independent resting-state components in schizophrenia , 2008, NeuroImage.

[176]  Saeid Sanei,et al.  Adaptive Processing of Brain Signals , 2013 .

[177]  John C Gore,et al.  Assessing functional connectivity in the human brain by fMRI. , 2007, Magnetic resonance imaging.

[178]  Rajesh Kumar,et al.  A method for removal of global effects from fMRI time series , 2004, NeuroImage.

[179]  Liang Wang,et al.  Dynamic functional reorganization of the motor execution network after stroke. , 2010, Brain : a journal of neurology.

[180]  Daniel Chicharro,et al.  Monitoring spike train synchrony , 2012, Journal of neurophysiology.

[181]  D. Tucker,et al.  EEG coherency. I: Statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales. , 1997, Electroencephalography and clinical neurophysiology.

[182]  Laura Astolfi,et al.  How the Statistical Validation of Functional Connectivity Patterns Can Prevent Erroneous Definition of Small-World Properties of a Brain Connectivity Network , 2012, Comput. Math. Methods Medicine.

[183]  C. Stam,et al.  Phase lag index: Assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources , 2007, Human brain mapping.

[184]  Mark D Humphries,et al.  Spike-Train Communities: Finding Groups of Similar Spike Trains , 2011, The Journal of Neuroscience.

[185]  S. Kesler,et al.  Influence of Choice of Null Network on Small-World Parameters of Structural Correlation Networks , 2013, PloS one.

[186]  C. Stam,et al.  The organization of physiological brain networks , 2012, Clinical Neurophysiology.

[187]  Nicholas I. Fisher,et al.  Statistical Analysis of Circular Data , 1993 .

[188]  Katarzyna J. Blinowska,et al.  A new method of the description of the information flow in the brain structures , 1991, Biological Cybernetics.

[189]  Alain Barrat,et al.  Bootstrapping under constraint for the assessment of group behavior in human contact networks , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[190]  Anil F. Ramlackhansingh,et al.  Lesion identification using unified segmentation-normalisation models and fuzzy clustering , 2008, NeuroImage.

[191]  M. Fox,et al.  Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging , 2007, Nature Reviews Neuroscience.

[192]  Karl J. Friston,et al.  Movement‐Related effects in fMRI time‐series , 1996, Magnetic resonance in medicine.

[193]  D. G. Watts,et al.  Spectral analysis and its applications , 1968 .

[194]  Frederico A. C. Azevedo,et al.  Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled‐up primate brain , 2009, The Journal of comparative neurology.