Graph removal lemmas

The graph removal lemma states that any graph on n vertices with o(n^{v(H)}) copies of a fixed graph H may be made H-free by removing o(n^2) edges. Despite its innocent appearance, this lemma and its extensions have several important consequences in number theory, discrete geometry, graph theory and computer science. In this survey we discuss these lemmas, focusing in particular on recent improvements to their quantitative aspects.

[1]  Frank Plumpton Ramsey,et al.  On a Problem of Formal Logic , 1930 .

[2]  R. Salem,et al.  On Sets of Integers Which Contain No Three Terms in Arithmetical Progression. , 1942, Proceedings of the National Academy of Sciences of the United States of America.

[3]  P. Erdös,et al.  On the structure of linear graphs , 1946 .

[4]  K. F. Roth On Certain Sets of Integers , 1953 .

[5]  P. Erdös On the structure of linear graphs , 1946 .

[6]  P. Erdos,et al.  A LIMIT THEOREM IN GRAPH THEORY , 1966 .

[7]  W. G. Brown,et al.  On the existence of triangulated spheres in 3-graphs, and related problems , 1973 .

[8]  E. Szemerédi Regular Partitions of Graphs , 1975 .

[9]  H. Furstenberg Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions , 1977 .

[10]  H. Furstenberg,et al.  An ergodic Szemerédi theorem for commuting transformations , 1978 .

[11]  D. Ornstein,et al.  The ergodic theoretical proof of Szemerédi's theorem , 1982 .

[12]  B. Bollobás The evolution of random graphs , 1984 .

[13]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[14]  Béla Bollobás,et al.  Random Graphs , 1985 .

[15]  Vojtech Rödl,et al.  The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent , 1986, Graphs Comb..

[16]  Zoltán Füredi,et al.  Exact solution of some Turán-type problems , 1987, J. Comb. Theory, Ser. A.

[17]  A. Thomason Pseudo-Random Graphs , 1987 .

[18]  Vojtech Rödl,et al.  On subsets of abelian groups with no 3-term arithmetic progression , 1987, J. Comb. Theory, Ser. A.

[19]  M. P. Alfaro,et al.  Solution of a problem of P. Tura´n on zeros of orthogonal polynomials on the unit circle , 1988 .

[20]  J. Rassias Solution of a problem of Ulam , 1989 .

[21]  Fan Chung Graham,et al.  Quasi-random graphs , 1988, Comb..

[22]  Lane H. Clark,et al.  Extremal problems for local properties of graphs , 1991, Australas. J Comb..

[23]  P. Erdös On Some of my Favourite Problems in Various Branches of Combinatorics , 1992 .

[24]  Zoltán Füredi,et al.  The maximum number of edges in a minimal graph of diameter 2 , 1992, J. Graph Theory.

[25]  Noga Alon,et al.  Explicit Ramsey graphs and orthonormal labelings , 1994, Electron. J. Comb..

[26]  Vojtech Rödl,et al.  The Algorithmic Aspects of the Regularity Lemma , 1994, J. Algorithms.

[27]  Vojtech Rödl,et al.  A Fast Approximation Algorithm for Computing the Frequencies of Subgraphs in a Given Graph , 1995, SIAM J. Comput..

[28]  V. Rödl,et al.  Threshold functions for Ramsey properties , 1995 .

[29]  Z. Füredi Extremal Hypergraphs and Combinatorial Geometry , 1995 .

[30]  Yoshiharu Kohayakawa,et al.  Turán's Extremal Problem in Random Graphs: Forbidding Even Cycles , 1995, J. Comb. Theory, Ser. B.

[31]  Y. Kohayakawa,et al.  Turán's extremal problem in random graphs: Forbidding odd cycles , 1996, Comb..

[32]  Alan M. Frieze,et al.  The regularity lemma and approximation schemes for dense problems , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[33]  Ronitt Rubinfeld,et al.  Robust Characterizations of Polynomials with Applications to Program Testing , 1996, SIAM J. Comput..

[34]  V. Rödl,et al.  Arithmetic progressions of length three in subsets of a random set , 1996 .

[35]  T. Lu ON K4-FREE SUBGRAPHS OF RANDOM GRAPHS , 1997 .

[36]  Y. Kohayakawa Szemerédi's regularity lemma for sparse graphs , 1997 .

[37]  W. T. Gowers,et al.  Lower bounds of tower type for Szemerédi's uniformity lemma , 1997 .

[38]  W. T. Gowers,et al.  A New Proof of Szemerédi's Theorem for Arithmetic Progressions of Length Four , 1998 .

[39]  Noga Alon,et al.  Efficient Testing of Large Graphs , 2000, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[40]  Alan M. Frieze,et al.  Quick Approximation to Matrices and Applications , 1999, Comb..

[41]  Svante Janson,et al.  Random graphs , 2000, ZOR Methods Model. Oper. Res..

[42]  Noga Alon,et al.  Testing subgraphs in large graphs , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[43]  W. T. Gowers,et al.  A new proof of Szemerédi's theorem , 2001 .

[44]  W. T. Gowers,et al.  A NEW PROOF OF SZEMER ´ EDI'S THEOREM , 2001 .

[45]  W. T. Gowers,et al.  RANDOM GRAPHS (Wiley Interscience Series in Discrete Mathematics and Optimization) , 2001 .

[46]  A. Rbnyi ON THE EVOLUTION OF RANDOM GRAPHS , 2001 .

[47]  Regularity , 2001, Peirce's Pragmatism.

[48]  P. Erdds SOME PROBLEMS ON PINITR AND INFINITE GRAPHS , 2001 .

[49]  Vojtech Rödl,et al.  Extremal problems on set systems , 2002, Random Struct. Algorithms.

[50]  Ronitt Rubinfeld,et al.  Monotonicity testing over general poset domains , 2002, STOC '02.

[51]  Vojtech Rödl,et al.  Holes in Graphs , 2001, Electron. J. Comb..

[52]  Noga Alon,et al.  Random sampling and approximation of MAX-CSPs , 2003, J. Comput. Syst. Sci..

[53]  Noga Alon,et al.  Testing subgraphs in directed graphs , 2003, STOC '03.

[54]  J. Solymosi Note on a Generalization of Roth’s Theorem , 2003 .

[55]  Vojtech Rödl,et al.  Regularity properties for triple systems , 2003, Random Struct. Algorithms.

[56]  B. Green A Szemerédi-type regularity lemma in abelian groups, with applications , 2003, math/0310476.

[57]  Noga Alon,et al.  A characterization of easily testable induced subgraphs , 2004, SODA '04.

[58]  József Solymosi,et al.  A Note on a Question of Erdős and Graham , 2004, Combinatorics, Probability and Computing.

[59]  I. Shkredov On a Generalization of Szemerédi's Theorem , 2005, math/0503639.

[60]  F. Chung A Spectral Turán Theorem , 2005, Combinatorics, Probability and Computing.

[61]  Vojtech Rödl,et al.  Every Monotone 3-Graph Property is Testable , 2005, SIAM J. Discret. Math..

[62]  Jozsef Solymosi Regularity, uniformity, and quasirandomness. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[63]  Vojtech Rödl,et al.  Counting subgraphs in quasi-random 4-uniform hypergraphs , 2005, Random Struct. Algorithms.

[64]  Benny Sudakov,et al.  A generalization of Turán's theorem , 2005, J. Graph Theory.

[65]  Vojtech Rödl,et al.  Counting Small Cliques in 3-uniform Hypergraphs , 2005, Comb. Probab. Comput..

[66]  Noga Alon,et al.  A characterization of the (natural) graph properties testable with one-sided error , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[67]  V. Rödl,et al.  The hypergraph regularity method and its applications. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[68]  W. T. Gowers,et al.  Quasirandomness, Counting and Regularity for 3-Uniform Hypergraphs , 2006, Combinatorics, Probability and Computing.

[69]  B. Sudakov,et al.  Pseudo-random Graphs , 2005, math/0503745.

[70]  Terence Tao A variant of the hypergraph removal lemma , 2006, J. Comb. Theory, Ser. A.

[71]  Terence Tao Szemerédi's regularity lemma revisited , 2006, Contributions Discret. Math..

[72]  Y. Ishigami A Simple Regularization of Hypergraphs , 2006, math/0612838.

[73]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[74]  Vojtech Rödl,et al.  The counting lemma for regular k‐uniform hypergraphs , 2006, Random Struct. Algorithms.

[75]  T. Luczak Randomness and regularity , 2006 .

[76]  Vojtech Rödl,et al.  Applications of the regularity lemma for uniform hypergraphs , 2006, Random Struct. Algorithms.

[77]  Vojtech Rödl,et al.  Every Monotone 3-Graph Property is Testable , 2007, SIAM J. Discret. Math..

[78]  B. Szegedy,et al.  Szemerédi’s Lemma for the Analyst , 2007 .

[79]  Vojtech Rödl,et al.  Regular Partitions of Hypergraphs: Regularity Lemmas , 2007, Combinatorics, Probability and Computing.

[80]  W. T. Gowers,et al.  Hypergraph regularity and the multidimensional Szemerédi theorem , 2007, 0710.3032.

[81]  V. Sós,et al.  Convergent Sequences of Dense Graphs I: Subgraph Frequencies, Metric Properties and Testing , 2007, math/0702004.

[82]  Noga Alon,et al.  Every monotone graph property is testable , 2005, STOC '05.

[83]  Noga Alon,et al.  A Characterization of the (Natural) Graph Properties Testable with One-Sided Error , 2008, SIAM J. Comput..

[84]  B. Szegedy,et al.  Testing properties of graphs and functions , 2008, 0803.1248.

[85]  D. Král,et al.  A removal lemma for systems of linear equations over finite fields , 2008, 0809.1846.

[86]  B. Szegedy The symmetry preserving removal lemma , 2008, 0809.2626.

[87]  Vojtech Rödl,et al.  Generalizations of the removal lemma , 2009, Comb..

[88]  Asaf Shapira Green's conjecture and testing linear-invariant properties , 2009, STOC '09.

[89]  Pablo Candela Pokorna Developments at the interface between combinatorics and Fourier analysis , 2009 .

[90]  Daniel Král,et al.  A combinatorial proof of the Removal Lemma for Groups , 2008, J. Comb. Theory, Ser. A.

[91]  D. Polymath,et al.  A new proof of the density Hales-Jewett theorem , 2009, 0910.3926.

[92]  Terence Tao,et al.  Testability and repair of hereditary hypergraph properties , 2008, Random Struct. Algorithms.

[93]  V. Rödl,et al.  On The Triangle Removal Lemma For Subgraphs of Sparse Pseudorandom Graphs , 2010 .

[94]  W. T. Gowers,et al.  Combinatorial theorems in sparse random sets , 2010, 1011.4310.

[95]  Jacob Fox,et al.  A new proof of the graph removal lemma , 2010, ArXiv.

[96]  V. Rödl,et al.  Regularity Lemmas for Graphs , 2010 .

[97]  A. Shapira A proof of Green's conjecture regarding the removal properties of sets of linear equations , 2008, 0807.4901.

[98]  David Conlon,et al.  Bounds for graph regularity and removal lemmas , 2011, ArXiv.

[99]  T. Schoen,et al.  Roth’s theorem in many variables , 2011, 1106.1601.

[100]  S. Kalyanasundaram,et al.  A Wowzer‐type lower bound for the strong regularity lemma , 2011, 1107.4896.

[101]  Béla Bollobás,et al.  Random Graphs, Second Edition , 2001, Cambridge Studies in Advanced Mathematics.

[102]  T. Sanders On Roth's theorem on progressions , 2010, 1011.0104.

[103]  Noga Alon,et al.  Nearly complete graphs decomposable into large induced matchings and their applications , 2011, STOC '12.

[104]  T. Sanders On the Bogolyubov–Ruzsa lemma , 2010, 1011.0107.

[105]  Jacob Fox,et al.  On a problem of Erdös and Rothschild on edges in triangles , 2012, Comb..

[106]  D. Saxton,et al.  Hypergraph containers , 2012, 1204.6595.

[107]  Yufei Zhao,et al.  Extremal results in sparse pseudorandom graphs , 2012, ArXiv.

[108]  Daniel Král,et al.  On the removal lemma for linear systems over Abelian groups , 2013, Eur. J. Comb..

[109]  W. T. Gowers,et al.  On the KŁR conjecture in random graphs , 2013, 1305.2516.

[110]  Wojciech Samotij Stability results for random discrete structures , 2014, Random Struct. Algorithms.

[111]  Alexandr V. Kostochka,et al.  On independent sets in hypergraphs , 2011, Random Struct. Algorithms.