A Generalization of a Fractional Variational Problem with Dependence on the Boundaries and a Real Parameter

In this paper, we present a new fractional variational problem where the Lagrangian depends not only on the independent variable, an unknown function and its left- and right-sided Caputo fractional derivatives with respect to another function, but also on the endpoint conditions and a free parameter. The main results of this paper are necessary and sufficient optimality conditions for variational problems with or without isoperimetric and holonomic restrictions. Our results not only provide a generalization to previous results but also give new contributions in fractional variational calculus. Finally, we present some examples to illustrate our results.

[1]  A non-standard class of variational problems of Herglotz type , 2021, Discrete & Continuous Dynamical Systems - S.

[2]  Kathleen A. Hoffman,et al.  Stability results for constrained calculus of variations problems: an analysis of the twisted elastic loop , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[3]  S. Holm,et al.  A unifying fractional wave equation for compressional and shear waves. , 2010, The Journal of the Acoustical Society of America.

[4]  Gisèle M. Mophou,et al.  Optimal control of fractional diffusion equation , 2011, Comput. Math. Appl..

[5]  Ricardo Almeida,et al.  A Caputo fractional derivative of a function with respect to another function , 2016, Commun. Nonlinear Sci. Numer. Simul..

[6]  Agnieszka B. Malinowska,et al.  Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative , 2010, Comput. Math. Appl..

[7]  Agnieszka B. Malinowska,et al.  Advanced Methods in the Fractional Calculus of Variations , 2015 .

[8]  N. Azimi-Tafreshi,et al.  Memory effects on epidemic evolution: The susceptible-infected-recovered epidemic model , 2017, Physical review. E.

[9]  Carla M. A. Pinto,et al.  A latency fractional order model for HIV dynamics , 2017, J. Comput. Appl. Math..

[10]  Om P. Agrawal,et al.  Formulation of Euler–Lagrange equations for fractional variational problems , 2002 .

[11]  Om P. Agrawal,et al.  Fractional variational calculus and the transversality conditions , 2006 .

[12]  Mohamed A. E. Herzallah,et al.  Fractional-order Euler–Lagrange equations and formulation of Hamiltonian equations , 2009 .

[13]  Frederick E. Riewe,et al.  Mechanics with fractional derivatives , 1997 .

[14]  Igor Podlubny,et al.  Modeling of the national economies in state-space: A fractional calculus approach , 2012 .

[15]  Eqab M. Rabei,et al.  On fractional Euler–Lagrange and Hamilton equations and the fractional generalization of total time derivative , 2007, 0708.1690.

[16]  Malgorzata Klimek,et al.  Lagrangean and Hamiltonian fractional sequential mechanics , 2002 .

[17]  R. Almeida Optimality conditions for fractional variational problems with free terminal time , 2017, 1702.00976.

[18]  Delfim F. M. Torres,et al.  Existence of Minimizers for Fractional Variational Problems Containing Caputo Derivatives , 2012, 1208.2363.

[19]  Weiqiu Zhu,et al.  Stochastic dynamics and fractional optimal control of quasi integrable Hamiltonian systems with fractional derivative damping , 2012 .

[20]  Pu Yi-Fei Fractional Differential Analysis for Texture of Digital Image , 2007 .

[21]  Monika Zecová,et al.  Heat conduction modeling by using fractional-order derivatives , 2015, Appl. Math. Comput..

[22]  Delfim F. M. Torres,et al.  Isoperimetric problems of the calculus of variations with fractional derivatives , 2011, 1105.2078.

[23]  Riewe,et al.  Nonconservative Lagrangian and Hamiltonian mechanics. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[24]  A non-standard optimal control problem arising in an economics application , 2013 .

[25]  T. Atanacković,et al.  Variational problems with fractional derivatives: Euler–Lagrange equations , 2008, 1101.2961.

[26]  Om P. Agrawal,et al.  Generalized Euler—Lagrange Equations and Transversality Conditions for FVPs in terms of the Caputo Derivative , 2007 .

[27]  J. A. Tenreiro Machado,et al.  Discrete-time fractional-order controllers , 2001 .