Experimental evidence of ferroelectric negative capacitance in nanoscale heterostructures

We report a proof-of-concept demonstration of negative capacitance effect in a nanoscale ferroelectric-dielectric heterostructure. In a bilayer of ferroelectric Pb(Zr0.2Ti0.8)O3 and dielectric SrTiO3, the composite capacitance was observed to be larger than the constituent SrTiO3 capacitance, indicating an effective negative capacitance of the constituent Pb(Zr0.2Ti0.8)O3 layer. Temperature is shown to be an effective tuning parameter for the ferroelectric negative capacitance and the degree of capacitance enhancement in the heterostructure. Landau’s mean field theory based calculations show qualitative agreement with observed effects. This work underpins the possibility that by replacing gate oxides by ferroelectrics in nanoscale transistors, the sub threshold slope can be lowered below the classical limit (60 mV/decade).

[1]  J. Mannhart,et al.  Very Large Capacitance Enhancement in a Two-Dimensional Electron System , 2010, Science.

[2]  D. Jimenez,et al.  Multidomain ferroelectricity as a limiting factor for voltage amplification in ferroelectric field-effect transistors , 2010, 1103.3768.

[3]  B. Shklovskii,et al.  Anomalously large capacitance of an ionic liquid described by the restricted primitive model. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  J. Triscone,et al.  X-Ray Diffraction Studies of 180° Ferroelectric Domains in PbTiO3/SrTiO3 Superlattices under an Applied Electric Field , 2010 .

[5]  A. Godoy,et al.  Analytic Model for the Surface Potential and Drain Current in Negative Capacitance Field-Effect Transistors , 2010, IEEE Transactions on Electron Devices.

[6]  P. Solomon,et al.  It’s Time to Reinvent the Transistor! , 2010, Science.

[7]  Ho Won Jang,et al.  Ferroelectricity in strain-free SrTiO3 thin films. , 2010, Physical review letters.

[8]  S. Datta,et al.  Can the subthreshold swing in a classical FET be lowered below 60 mV/decade? , 2008, 2008 IEEE International Electron Devices Meeting.

[9]  S. Datta,et al.  Use of negative capacitance to provide voltage amplification for low power nanoscale devices. , 2008, Nano letters.

[10]  D. Vanderbilt,et al.  Suppressed dependence of polarization on epitaxial strain in highly polar ferroelectrics. , 2007, Physical review letters.

[11]  Chang-Beom Eom,et al.  Size effects in ultrathin epitaxial ferroelectric heterostructures , 2004 .

[12]  G. Catalan,et al.  Relaxor features in ferroelectric superlattices: A Maxwell–Wagner approach , 2000 .

[13]  M. Kakihana,et al.  Neutron Diffraction Studies of Pb(ZrxTi1-x)O3 Ceramics , 2000 .

[14]  Yuan Taur,et al.  Fundamentals of Modern VLSI Devices , 1998 .

[15]  R. Mckee,et al.  Crystalline Oxides on Silicon: The First Five Monolayers , 1998 .

[16]  D. J. Johnson,et al.  Dielectric properties of BaTiO3/SrTiO3 multilayered thin films prepared by pulsed laser deposition , 1998 .

[17]  Hidekazu Tanaka,et al.  FORMATION OF ARTIFICIAL BATIO3/SRTIO3 SUPERLATTICES USING PULSED LASER DEPOSITION AND THEIR DIELECTRIC PROPERTIES , 1994 .

[18]  West,et al.  Negative compressibility of interacting two-dimensional electron and quasiparticle gases. , 1992, Physical review letters.

[19]  A. M. Glass,et al.  Principles and Applications of Ferroelectrics and Related Materials , 1977 .

[20]  A. Hippel,et al.  Dielectrics and Waves , 1966 .

[21]  Jean-Marc Triscone,et al.  Physics of ferroelectrics : a modern perspective , 2007 .

[22]  P. Paufler,et al.  Numerical Data and Functional Relationships in Science and Technology - New Series. , 1994 .