Ranking experts using author-document-topic graphs

Expert search or recommendation involves the retrieval of people (experts) in response to a query and on occasion, a given set of constraints. In this paper, we address expert recommendation in academic domains that are different from web and intranet environments studied in TREC. We propose and study graph-based models for expertise retrieval with the objective of enabling search using either a topic (e.g. "Information Extraction") or a name (e.g. "Bruce Croft"). We show that graph-based ranking schemes despite being "generic" perform on par with expert ranking models specific to topic-based and name-based querying.

[1]  Gene H. Golub,et al.  Computing PageRank using Power Extrapolation , 2003 .

[2]  C. Lee Giles,et al.  Ranking authors in digital libraries , 2011, JCDL '11.

[3]  Jie Tang,et al.  ArnetMiner: extraction and mining of academic social networks , 2008, KDD.

[4]  Djoerd Hiemstra,et al.  Modeling multi-step relevance propagation for expert finding , 2008, CIKM '08.

[5]  M. de Rijke,et al.  Finding similar experts , 2007, SIGIR.

[6]  Sheldon M. Ross Introduction to Probability Models. , 1995 .

[7]  Sheldon M. Ross,et al.  Introduction to Probability Models, Eighth Edition , 1972 .

[8]  Ruoming Jin,et al.  A Topic Modeling Approach and Its Integration into the Random Walk Framework for Academic Search , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[9]  Hinrich Schütze,et al.  Introduction to information retrieval , 2008 .

[10]  M. de Rijke,et al.  Determining Expert Profiles (With an Application to Expert Finding) , 2007, IJCAI.

[11]  Craig MacDonald,et al.  Voting for candidates: adapting data fusion techniques for an expert search task , 2006, CIKM '06.

[12]  Wolfgang Nejdl,et al.  A Vector Space Model for Ranking Entities and Its Application to Expert Search , 2009, ECIR.

[13]  Hongbo Deng,et al.  Formal Models for Expert Finding on DBLP Bibliography Data , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[14]  Stephen E. Robertson,et al.  A probabilistic model of information retrieval: development and comparative experiments - Part 2 , 2000, Inf. Process. Manag..

[15]  Xiaolong Zhang,et al.  CollabSeer: a search engine for collaboration discovery , 2011, JCDL '11.

[16]  Marco Rosa,et al.  Robustness of Social Networks: Comparative Results Based on Distance Distributions , 2011, SocInfo.

[17]  Maarten de Rijke,et al.  Contextual factors for finding similar experts , 2010, J. Assoc. Inf. Sci. Technol..

[18]  Raymond Y. K. Lau,et al.  A Personalized Researcher Recommendation Approach in Academic Contexts: Combining Social Networks and Semantic Concepts Analysis , 2010, PACIS.

[19]  C. Lee Giles,et al.  Similar researcher search in academic environments , 2012, JCDL '12.

[20]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[21]  Theodoros Lappas,et al.  Finding a team of experts in social networks , 2009, KDD.

[22]  M. de Rijke,et al.  Formal models for expert finding in enterprise corpora , 2006, SIGIR.

[23]  Mark Steyvers,et al.  Finding scientific topics , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Thomas Hofmann,et al.  Probabilistic latent semantic indexing , 1999, SIGIR '99.

[25]  Daniel Kifer,et al.  Context-aware citation recommendation , 2010, WWW '10.

[26]  Thomas L. Griffiths,et al.  The Author-Topic Model for Authors and Documents , 2004, UAI.

[27]  Gregor Heinrich Parameter estimation for text analysis , 2009 .

[28]  M. de Rijke,et al.  Broad expertise retrieval in sparse data environments , 2007, SIGIR.

[29]  C. J. van Rijsbergen,et al.  Investigating the relationship between language model perplexity and IR precision-recall measures , 2003, SIGIR.