Kernel Supervised Ensemble Classifier for the Classification of Hyperspectral Data Using Few Labeled Samples

Kernel-based methods and ensemble learning are two important paradigms for the classification of hyperspectral remote sensing images. However, they were developed in parallel with different principles. In this paper, we aim to combine the advantages of kernel and ensemble methods by proposing a kernel supervised ensemble classification method. In particular, the proposed method, namely RoF-KOPLS, combines the merits of ensemble feature learning (i.e., Rotation Forest (RoF)) and kernel supervised learning (i.e., Kernel Orthonormalized Partial Least Square (KOPLS)). In particular, the feature space is randomly split into K disjoint subspace and KOPLS is applied to each subspace to produce the new features set for the training of decision tree classifier. The final classification result is assigned to the corresponding class by the majority voting rule. Experimental results on two hyperspectral airborne images demonstrated that RoF-KOPLS with radial basis function (RBF) kernel yields the best classification accuracies due to the ability of improving the accuracies of base classifiers and the diversity within the ensemble, especially for the very limited training set. Furthermore, our proposed method is insensitive to the number of subsets.

[1]  Gary A. Shaw,et al.  Hyperspectral Image Processing for Automatic Target Detection Applications , 2003 .

[2]  Jon Atli Benediktsson,et al.  Recent Advances in Techniques for Hyperspectral Image Processing , 2009 .

[3]  Juan José Rodríguez Diez,et al.  Rotation Forest: A New Classifier Ensemble Method , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  K. Moffett,et al.  Remote Sens , 2015 .

[5]  Pai-Hui Hsu,et al.  Feature extraction of hyperspectral images using wavelet and matching pursuit , 2007 .

[6]  Björn Waske,et al.  Classifier ensembles for land cover mapping using multitemporal SAR imagery , 2009 .

[7]  Ludmila I. Kuncheva,et al.  Relationships between combination methods and measures of diversity in combining classifiers , 2002, Inf. Fusion.

[8]  Ludmila I. Kuncheva,et al.  Measures of Diversity in Classifier Ensembles and Their Relationship with the Ensemble Accuracy , 2003, Machine Learning.

[9]  S. Wold,et al.  Multivariate Data Analysis in Chemistry , 1984 .

[10]  Lior Rokach,et al.  Pattern Classification Using Ensemble Methods , 2009, Series in Machine Perception and Artificial Intelligence.

[11]  Wei Zhang,et al.  Multiple Classifier System for Remote Sensing Image Classification: A Review , 2012, Sensors.

[12]  Andreas Bartels,et al.  Semi-supervised kernel canonical correlation analysis with application to human fMRI , 2011, Pattern Recognit. Lett..

[13]  G. F. Hughes,et al.  On the mean accuracy of statistical pattern recognizers , 1968, IEEE Trans. Inf. Theory.

[14]  Subhash C. Bagui,et al.  Combining Pattern Classifiers: Methods and Algorithms , 2005, Technometrics.

[15]  Jon Atli Benediktsson,et al.  Multiple Classifier Systems in Remote Sensing: From Basics to Recent Developments , 2007, MCS.

[16]  Peijun Du,et al.  Spectral–Spatial Classification for Hyperspectral Data Using Rotation Forests With Local Feature Extraction and Markov Random Fields , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[17]  David A. Clausi,et al.  Hyperspectral Image Classification With Limited Labeled Training Samples Using Enhanced Ensemble Learning and Conditional Random Fields , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[18]  Chun-Xia Zhang,et al.  RotBoost: A technique for combining Rotation Forest and AdaBoost , 2008, Pattern Recognit. Lett..

[19]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2004 .

[20]  David A. Clausi,et al.  Combining rotation forests and adaboost for hyperspectral imagery classification using few labeled samples , 2014, 2014 IEEE Geoscience and Remote Sensing Symposium.

[21]  M. Barker,et al.  Partial least squares for discrimination , 2003 .

[22]  Lorenzo Bruzzone,et al.  Kernel-Based Domain-Invariant Feature Selection in Hyperspectral Images for Transfer Learning , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[23]  Padraig Cunningham,et al.  Diversity versus Quality in Classification Ensembles Based on Feature Selection , 2000, ECML.

[24]  Bo Du,et al.  Maximum margin metric learning based target detection for hyperspectral images , 2015 .

[25]  Roman Rosipal,et al.  Kernel Partial Least Squares Regression in Reproducing Kernel Hilbert Space , 2002, J. Mach. Learn. Res..

[26]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[27]  Luis O. Jimenez-Rodriguez,et al.  Unsupervised Linear Feature-Extraction Methods and Their Effects in the Classification of High-Dimensional Data , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[28]  Mahesh Pal,et al.  Random forest classifier for remote sensing classification , 2005 .

[29]  Kaare Brandt Petersen,et al.  Sparse Kernel Orthonormalized PLS for feature extraction in large data sets , 2006, NIPS.

[30]  Gustavo Camps-Valls,et al.  Feature extraction from remote sensing data using Kernel Orthonormalized PLS , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[31]  G. Foody Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy , 2004 .

[32]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[33]  John A. Richards,et al.  Remote Sensing Digital Image Analysis , 1986 .

[34]  Laurie A. Chisholm,et al.  Classification of Australian Native Forest Species Using Hyperspectral Remote Sensing and Machine-Learning Classification Algorithms , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[35]  Johannes R. Sveinsson,et al.  Multiple classifiers applied to multisource remote sensing data , 2002, IEEE Trans. Geosci. Remote. Sens..

[36]  J. Chanussot,et al.  Hyperspectral Remote Sensing Data Analysis and Future Challenges , 2013, IEEE Geoscience and Remote Sensing Magazine.

[37]  Kaare Brandt Petersen,et al.  Kernel Multivariate Analysis Framework for Supervised Subspace Learning: A Tutorial on Linear and Kernel Multivariate Methods , 2013, IEEE Signal Processing Magazine.

[38]  Kagan Tumer,et al.  Classifier ensembles: Select real-world applications , 2008, Inf. Fusion.

[39]  Karl J. Friston,et al.  Characterizing the Response of PET and fMRI Data Using Multivariate Linear Models , 1997, NeuroImage.

[40]  Peijun Du,et al.  Random Forest and Rotation Forest for fully polarized SAR image classification using polarimetric and spatial features , 2015 .

[41]  Qian Du,et al.  Modified Fisher's Linear Discriminant Analysis for Hyperspectral Imagery , 2007, IEEE Geoscience and Remote Sensing Letters.

[42]  Antonio Artés-Rodríguez,et al.  Maximization of Mutual Information for Supervised Linear Feature Extraction , 2007, IEEE Transactions on Neural Networks.

[43]  José Luis Rojo-Álvarez,et al.  Kernel Methods in Bioengineering, Signal And Image Processing , 2007 .

[44]  Antonio J. Plaza,et al.  Dimensionality reduction and classification of hyperspectral image data using sequences of extended morphological transformations , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[45]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .

[46]  Jocelyn Chanussot,et al.  Rotation-Based Ensemble Classifiers for High-Dimensional Data , 2014, Fusion in Computer Vision.

[47]  Peijun Du,et al.  Random Subspace Ensembles for Hyperspectral Image Classification With Extended Morphological Attribute Profiles , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[48]  Gustavo Camps-Valls,et al.  Efficient Kernel Orthonormalized PLS for Remote Sensing Applications , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[49]  Bernhard Schölkopf,et al.  Remote Sensing Feature Selection by Kernel Dependence Measures , 2010, IEEE Geoscience and Remote Sensing Letters.

[50]  Jon Atli Benediktsson,et al.  Advances in Spectral-Spatial Classification of Hyperspectral Images , 2013, Proceedings of the IEEE.

[51]  Vasile Palade,et al.  Multi-Classifier Systems: Review and a roadmap for developers , 2006, Int. J. Hybrid Intell. Syst..

[52]  Peijun Du,et al.  Hyperspectral Remote Sensing Image Classification Based on Rotation Forest , 2014, IEEE Geoscience and Remote Sensing Letters.