Solitary waves in a general class of granular dimer chains

We report on a countable infinity of traveling solitary waves in a class of highly heterogeneous ordered one-dimensional granular media, in particular, granular dimers composed of an infinite number of periodic sets of “heavy” elastic spherical beads in contact with N “light” ones; these media are denoted as 1:N granular dimers. Perfectly elastic Hertzian interaction between beads is assumed and no dissipative forces are taken into account in our study; moreover, zero pre-compression is assumed, rendering the dynamics strongly nonlinear through complete elimination of linear acoustics from the problem. After developing a general asymptotic methodology for the 1:N granular dimer, we focus on the case N=2 and prove numerically and asymptotically the existence of a countable infinity of traveling solitary waves in the 1:2 dimer chain. These solitary waves, which can be regarded as anti-resonances in these strongly nonlinear media, are found to be qualitatively different than those previously studied in homog...

[1]  A. Vakakis,et al.  Scattering of Solitary Waves and Excitation of Transient Breathers in Granular Media by Light Intruders and No Precompression , 2012 .

[2]  Panayotis G. Kevrekidis,et al.  Dynamics of Phase Transitions in a Piecewise Linear Diatomic Chain , 2012, J. Nonlinear Sci..

[3]  A. Vakakis,et al.  Primary wave transmission in systems of elastic rods with granular interfaces , 2011 .

[4]  Alexander F Vakakis,et al.  New family of solitary waves in granular dimer chains with no precompression. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Alexander F Vakakis,et al.  Traveling waves and localized modes in one-dimensional homogeneous granular chains with no precompression. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  F. Melo,et al.  Wave localization in strongly nonlinear Hertzian chains with mass defect. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  Mason A Porter,et al.  Dissipative solitary waves in granular crystals. , 2008, Physical review letters.

[8]  Surajit Sen,et al.  Solitary waves in the granular chain , 2008 .

[9]  Mason A Porter,et al.  Highly nonlinear solitary waves in periodic dimer granular chains. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Mason A. Porter,et al.  Highly Nonlinear Solitary Waves in Heterogeneous Periodic Granular Media , 2007, 0712.3552.

[11]  V F Nesterenko,et al.  Shock wave structure in a strongly nonlinear lattice with viscous dissipation. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  C. Daraio,et al.  Energy trapping and shock disintegration in a composite granular medium. , 2005, Physical review letters.

[13]  C. Daraio,et al.  Tunability of solitary wave properties in one-dimensional strongly nonlinear phononic crystals. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Adam Sokolow,et al.  How hertzian solitary waves interact with boundaries in a 1D granular medium. , 2005, Physical review letters.

[15]  C. Daraio,et al.  Strongly nonlinear waves in a chain of Teflon beads. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  S. Sen,et al.  Solitary wave dynamics in generalized Hertz chains: an improved solution of the equation of motion. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Bruno Gilles,et al.  On the validity of Hertz contact law for granular material acoustics , 1999 .

[18]  Eric Falcon,et al.  Solitary waves in a chain of beads under Hertz contact , 1997 .

[19]  Hyman,et al.  Compactons: Solitons with finite wavelength. , 1993, Physical review letters.

[20]  Flytzanis,et al.  Soliton dynamics of nonlinear diatomic lattices. , 1986, Physical review. B, Condensed matter.

[21]  K. Johnson Contact Mechanics: Frontmatter , 1985 .

[22]  A. Scott,et al.  The soliton: A new concept in applied science , 1973 .