CONTSID : un outil logiciel pour l'identification de modèles paramétriques à temps continu à partir de données expérimentales

L'objectif principal de cet article est de decrire la boite a outils Matlab : CONtinuous-Time System IDentification (CONTSID) ; elle permet l'identification directe de modeles a temps continu representes sous forme de fonction de transfert ou de modele d'etat, a partir de donnees echantillonnees regulierement ou non. Cet article presente egalement l'interface utilisateur facilitant l'analyse et le pre-traitement des donnees, l'estimation des parametres ainsi que la validation du modele obtenu. Par ailleurs, les avantages de l'identification directe de modeles a temps continu a partir de donnees echantillonnees sont egalement resumes.

[1]  Hugues Garnier,et al.  The CONTSID Toolbox: A Matlab Toolbox for Continuous-Time System Identification , 2000 .

[2]  Hugues Garnier,et al.  Continuous-time model identification from sampled data: Implementation issues and performance evaluation , 2003 .

[3]  H. Gamier,et al.  CONTSID — A continuous-time system identification toolbox for Matlab® , 1999, 1999 European Control Conference (ECC).

[4]  Peter C. Young,et al.  Identification and estimation of continuous-time, data-based mechanistic (DBM) models for environmental systems , 2006, Environ. Model. Softw..

[5]  Marion Gilson,et al.  Developments for the matlab contsid toolbox , 2003 .

[6]  Marion Gilson,et al.  Latest developments for the Matlab CONTSID toolbox , 2006 .

[7]  H. Garnier,et al.  A bias-free least-squares parameter estimator for continuous-time state-space models , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[8]  H. Garnier,et al.  An approach to continuous-time model identification from non-uniformly sampled data , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[9]  Lennart Ljung,et al.  Initialisation aspects for subspace and output-error identification methods , 2003, 2003 European Control Conference (ECC).

[10]  Hugues Garnier,et al.  Identification of continuous-time systems: direct or indirect? , 2004 .

[11]  Karl Johan Åström,et al.  Zeros of sampled systems , 1980, 1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[12]  Hugues Garnier,et al.  Numerical illustrations of the relevance of direct continuous-time model identification , 2002 .

[13]  D Feng,et al.  Generalized linear least squares algorithm for non-uniformly sampled biomedical system identification with possible repeated eigenvalues. , 1998, Computer methods and programs in biomedicine.

[14]  H. Garnier,et al.  A PMF-based subspace method for continuous-time model identification. Application to a multivariable winding process , 2001 .