Sulfate reducing bacteria in microbial mats: Changing paradigms, new discoveries

[1]  M. Wagner,et al.  probeBase—an online resource for rRNA-targeted oligonucleotide probes: new features 2007 , 2006, Nucleic Acids Res..

[2]  Scott R. Miller,et al.  Unexpected Diversity and Complexity of the Guerrero Negro Hypersaline Microbial Mat , 2006, Applied and Environmental Microbiology.

[3]  P. Visscher,et al.  Microbial lithification in marine stromatolites and hypersaline mats. , 2005, Trends in microbiology.

[4]  N. Pace,et al.  Composition and Structure of Microbial Communities from Stromatolites of Hamelin Pool in Shark Bay, Western Australia , 2005, Applied and Environmental Microbiology.

[5]  P. Visscher,et al.  Microbial mats as bioreactors: populations, processes, and products , 2005 .

[6]  R. Reid,et al.  Production and cycling of natural microbial exopolymers (EPS) within a marine stromatolite , 2005 .

[7]  N. Pace,et al.  Hydrogen and bioenergetics in the Yellowstone geothermal ecosystem. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[8]  U. Witte,et al.  The microbial community structure of different permeable sandy sediments characterized by the investigation of bacterial fatty acids and fluorescence in situ hybridization. , 2005, Environmental microbiology.

[9]  Pieter T. Visscher,et al.  Microbe–mineral interactions: early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas) , 2004 .

[10]  S. Golubić,et al.  Biochemical Control of Calcium Carbonate Precipitation in Modern Lagoonal Microbialites, Tikehau Atoll, French Polynesia , 2004 .

[11]  Yanan Shen,et al.  The antiquity of microbial sulfate reduction , 2004 .

[12]  M. Fournier,et al.  A New Function of the Desulfovibrio vulgaris Hildenborough [Fe] Hydrogenase in the Protection against Oxidative Stress* , 2004, Journal of Biological Chemistry.

[13]  É. Verrecchia,et al.  Bacterially Induced Mineralization of Calcium Carbonate in Terrestrial Environments: The Role of Exopolysaccharides and Amino Acids , 2003 .

[14]  G. Muyzer,et al.  Structural and functional analysis of a microbial mat ecosystem from a unique permanent hypersaline inland lake: 'La Salada de Chiprana' (NE Spain). , 2003, FEMS microbiology ecology.

[15]  D. Schriemer,et al.  Function of Oxygen Resistance Proteins in the Anaerobic, Sulfate-Reducing Bacterium Desulfovibrio vulgaris Hildenborough , 2003, Journal of bacteriology.

[16]  J. Mckenzie,et al.  Bacterial sulfate reduction and salinity: two controls on dolomite precipitation in Lagoa Vermelha and Brejo do Espinho (Brazil) , 2002, Hydrobiologia.

[17]  Bonnie L Bassler,et al.  Small Talk Cell-to-Cell Communication in Bacteria , 2002, Cell.

[18]  A. Decho,et al.  A laboratory investigation of cyanobacterial extracellular polymeric secretions (EPS) in influencing CaCO3 polymorphism , 2002 .

[19]  M. Taillefert,et al.  Environmental electrochemistry : analyses of trace element biogeochemistry , 2002 .

[20]  S. Golubić,et al.  Microbialites in a modern lagoonal environment: nature and distribution, Tikehau atoll (French Polynesia) , 2001 .

[21]  F. Sansone,et al.  Christmas Island lagoonal lakes, models for the deposition of carbonate{evaporite{organic laminated sediments , 2001 .

[22]  Donald E. Canfield,et al.  Isotopic evidence for microbial sulphate reduction in the early Archaean era , 2001, Nature.

[23]  H. Cypionka,et al.  Life at the oxic-anoxic interface: microbial activities and adaptations. , 2000, FEMS microbiology reviews.

[24]  J. Mckenzie,et al.  Bacterially induced dolomite precipitation in anoxic culture experiments , 2000 .

[25]  E. Meshorer,et al.  Transition from Anaerobic to Aerobic Growth Conditions for the Sulfate-Reducing Bacterium Desulfovibrio oxyclinae Results in Flocculation , 2000, Applied and Environmental Microbiology.

[26]  M. Baev,et al.  Sulfate Reduction and Possible Aerobic Metabolism of the Sulfate-Reducing Bacterium Desulfovibrio oxyclinae in a Chemostat Coculture with Marinobacter sp. Strain MB under Exposure to Increasing Oxygen Concentrations , 2000, Applied and Environmental Microbiology.

[27]  R. Reid,et al.  Microscale observations of sulfate reduction: Correlation of microbial activity with lithified micritic laminae in modern marine stromatolites , 2000 .

[28]  H. Paerl,et al.  The role of microbes in accretion, lamination and early lithification of modern marine stromatolites , 2000, Nature.

[29]  H. Cypionka,et al.  Detection of abundant sulphate-reducing bacteria in marine oxic sediment layers by a combined cultivation and molecular approach. , 2000, Environmental microbiology.

[30]  B. Bassler How bacteria talk to each other: regulation of gene expression by quorum sensing. , 1999, Current opinion in microbiology.

[31]  M. Kühl,et al.  Aerotaxis in Desulfovibrio. , 1999, Environmental microbiology.

[32]  D. Stahl,et al.  Unexpected Population Distribution in a Microbial Mat Community: Sulfate-Reducing Bacteria Localized to the Highly Oxic Chemocline in Contrast to a Eukaryotic Preference for Anoxia , 1999, Applied and Environmental Microbiology.

[33]  P. Visscher,et al.  Low-Molecular-Weight Sulfonates, a Major Substrate for Sulfate Reducers in Marine Microbial Mats , 1999, Applied and Environmental Microbiology.

[34]  V. Thiel,et al.  Biofilm exopolymers control microbialite formation at thermal springs discharging into the alkaline Pyramid Lake, Nevada, USA , 1999 .

[35]  John,et al.  Formation of lithified micritic laminae in modern marine stromatolites (Bahamas); the role of sulfur cycling , 1998 .

[36]  Niels B. Ramsing,et al.  Sulfate-Reducing Bacteria and Their Activities in Cyanobacterial Mats of Solar Lake (Sinai, Egypt) , 1998, Applied and Environmental Microbiology.

[37]  R. Amann,et al.  Microbial Community Composition of Wadden Sea Sediments as Revealed by Fluorescence In Situ Hybridization , 1998, Applied and Environmental Microbiology.

[38]  P. Freytet,et al.  Freshwater organisms that build stromatolites: a synopsis of biocrystallization by prokaryotic and eukaryotic algae , 1998 .

[39]  E. W. V. van Niel,et al.  Oxygen Consumption by DesulfovibrioStrains with and without Polyglucose , 1998, Applied and Environmental Microbiology.

[40]  R Amann,et al.  Phylogenetic analysis and in situ identification of bacteria in activated sludge , 1997, Applied and environmental microbiology.

[41]  H. Gemerden,et al.  Syntrophic growth of sulfate-reducing bacteria and colorless sulfur bacteria during oxygen limitation , 1997 .

[42]  P. Freytet,et al.  Modern freshwater microbial carbonates: thePhormidium stromatolites (tufa-travertine) of southeastern Burgundy (Paris Basin, France) , 1996 .

[43]  F. Sansone,et al.  Texture of Microbial Sediments Revealed by Cryo-Scanning Electron Microscopy , 1996 .

[44]  H. Cypionka,et al.  The preferred electron acceptor of Desulfovibrio desulfuricans CSN , 1995 .

[45]  G. Voordouw The genus desulfovibrio: the centennial , 1995, Applied and environmental microbiology.

[46]  K. Schleifer,et al.  Phylogenetic identification and in situ detection of individual microbial cells without cultivation. , 1995, Microbiological reviews.

[47]  D. Stahl,et al.  Community structure of a microbial mat: the phylogenetic dimension. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[48]  Erko Stackebrandt,et al.  Taxonomic Note: A Place for DNA-DNA Reassociation and 16S rRNA Sequence Analysis in the Present Species Definition in Bacteriology , 1994 .

[49]  S. Kempe,et al.  The role of alkalinity in the evolution of ocean chemistry, organization of living systems, and biocalcification processes , 1994 .

[50]  J. Reitner Modern cryptic microbialite/metazoan facies from Lizard Island (Great Barrier Reef, Australia) formation and concepts , 1993 .

[51]  D. Canfield,et al.  Biogeochemical cycles of carbon, sulfur, and free oxygen in a microbial mat , 1993, Geochimica et cosmochimica acta.

[52]  L. M. Walter,et al.  Dissolution and recrystallization in modern shelf carbonates: evidence from pore water and solid phase chemistry , 1993, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[53]  D. Canfield,et al.  Pathways of organic carbon oxidation in three continental margin sediments. , 1993, Marine geology.

[54]  H. Gemerden Microbial mats: A joint venture , 1993 .

[55]  H. Santos,et al.  Rubredoxin oxidase, a new flavo-hemo-protein, is the site of oxygen reduction to water by the "strict anaerobe" Desulfovibrio gigas. , 1993, Biochemical and biophysical research communications.

[56]  H. Cypionka,et al.  Influence of oxygen on sulfate reduction and growth of sulfate-reducing bacteria , 1993, Archives of Microbiology.

[57]  H. Cypionka,et al.  Oxidation of H2, organic compounds and inorganic sulfur compounds coupled to reduction of O2 or nitrate by sulfate-reducing bacteria , 1992, Archives of Microbiology.

[58]  P. Visscher,et al.  Rates of sulfate reduction and thiosulfate consumption in a marine microbial mat , 1992 .

[59]  Y. Cohen,et al.  Diurnal Cycles of Sulfate Reduction under Oxic Conditions in Cyanobacterial Mats , 1992, Applied and environmental microbiology.

[60]  D. Canfield,et al.  Aerobic sulfate reduction in microbial mats. , 1991, Science.

[61]  B. Jørgensen,et al.  Pathways and Microbiology of Thiosulfate Transformations and Sulfate Reduction in a Marine Sediment (Kattegat, Denmark) , 1991, Applied and environmental microbiology.

[62]  W. Dilling,et al.  Aerobic respiration in sulfate‐reducing bacteria* , 1990 .

[63]  D. Stahl,et al.  Natural relationships among sulfate-reducing eubacteria , 1989, Journal of bacteriology.

[64]  F. Widdel,et al.  Survival of sulfate-reducing bacteria after oxygen stress, and growth in sulfate-free oxygen-sulfide gradients , 1985 .

[65]  P. Armstrong,et al.  Calcification of cyanobacterial mats in Solar Lake, Sinai , 1984 .

[66]  D. Graf,et al.  Sedimentary geology. , 1979, Science.

[67]  B. Jørgensen,et al.  Solar Lake (Sinai). 5. The sulfur cycle of the bcnthic cyanobacterial mats1 , 1977 .

[68]  W. Krumbein,et al.  Solar Lake (Sinai). 4. Stromatolitic cyanobacterial mats1 , 1977 .

[69]  J. Postgate Sulphate Reduction by Bacteria , 1959 .

[70]  W. Krumbein,et al.  Solar Lake (Sinai). 4. Stromatolitic Cyanobacterial Mats , 2008 .

[71]  A. Reimer,et al.  Microbialite Formation in Seawater of Increased Alkalinity, Satonda Crater Lake, Indonesia , 2003 .

[72]  Michael Wagner,et al.  probeBase: an online resource for rRNA-targeted oligonucleotide probes , 2003, Nucleic Acids Res..

[73]  R. Reid,et al.  Microelectrode measurements in stromatolites: Unraveling the Earth's past? , 2002 .

[74]  R. Amann,et al.  Fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes , 2001 .

[75]  H. Cypionka,et al.  Oxygen respiration by desulfovibrio species. , 2000, Annual review of microbiology.

[76]  S. Sørensen,et al.  Influence of fungal-bacterial interactions on bacterial conjugation in the residuesphere. , 2000, FEMS microbiology ecology.

[77]  A. Knoll,et al.  Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? , 1999, Annual review of earth and planetary sciences.

[78]  Miguel C. Teixeira,et al.  Desulfovibrio gigas neelaredoxin , 1999 .

[79]  C. Rodrigues-Pousada,et al.  Desulfovibrio gigas neelaredoxin. A novel superoxide dismutase integrated in a putative oxygen sensory operon of an anaerobe. , 1999, European journal of biochemistry.

[80]  P. Visscher,et al.  Sulfur Cycling in Laminated Marine Microbial Ecosystems , 1993 .

[81]  R. Oremland Biogeochemistry of global change : radiatively active trace gases : selected papers from the Tenth International Symposium on Environmental Biogeochemistry, San Francisco, August 19-24, 1991 , 1993 .

[82]  H. Cypionka,et al.  A novel type of energy metabolism involving fermentation of inorganic sulphur compounds , 1987, Nature.