A study of relative phase in complex wavelet domain: Property, statistics and applications in texture image retrieval and segmentation

In this paper, we develop a new approach which exploits the probabilistic properties from the phase information of 2-D complex wavelet coefficients for image modeling. Instead of directly using phases of complex wavelet coefficients, we demonstrate why relative phases should be used. The definition, properties and statistics of relative phases of complex coefficients are studied in detail. We proposed von Mises and wrapped Cauchy for the probability density function (pdf) of relative phases in the complex wavelet domain. The maximum-likelihood method is used to estimate two parameters of von Mises and wrapped Cauchy. We demonstrate that the von Mises and wrapped Cauchy fit well with real data obtained from various real images including texture images as well as standard images. The von Mises and wrapped Cauchy models are compared, and the simulation results show that the wrapped Cauchy fits well with the peaky and heavy-tailed pdf of relative phases and the von Mises fits well with the pdf which is in Gaussian shape. For most of the test images, the wrapped Cauchy model is more accurate than the von Mises model, when images are decomposed by different complex wavelet transforms including dual-tree complex wavelet (DTCWT), pyramidal dual-tree directional filter bank (PDTDFB) and uniform discrete curvelet transform (UDCT). Moreover, the relative phase is applied to obtain new features for texture image retrieval and segmentation applications. Instead of using only real or magnitude coefficients, the new approach uses a feature in which phase information is incorporated, yielding a higher accuracy in texture image retrieval as well as in segmentation. The relative phase information which is complementary to the magnitude is a promising approach in image processing.

[1]  Soontorn Oraintara,et al.  Image Denoising using Shiftable Directional Pyramid and Scale Mixtures of Complex Gaussians , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[2]  Nick G. Kingsbury,et al.  Multiscale classification using complex wavelets and hidden Markov tree models , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[3]  Martin J. Wainwright,et al.  Scale Mixtures of Gaussians and the Statistics of Natural Images , 1999, NIPS.

[4]  N. Kingsbury Complex Wavelets for Shift Invariant Analysis and Filtering of Signals , 2001 .

[5]  Nick G. Kingsbury,et al.  Hidden Markov tree modeling of complex wavelet transforms , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[6]  Michael T. Orchard,et al.  Image Inpainting Based on Geometrical Modeling of Complexwavelet Coefficients , 2007, 2007 IEEE International Conference on Image Processing.

[7]  Justin K. Romberg,et al.  Multiscale edge grammars for complex wavelet transforms , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[8]  Robert D. Nowak,et al.  Wavelet-based statistical signal processing using hidden Markov models , 1998, IEEE Trans. Signal Process..

[9]  Rama Chellappa,et al.  Multiresolution Gauss-Markov random field models for texture segmentation , 1997, IEEE Trans. Image Process..

[10]  Pierre Moulin,et al.  Analysis of Multiresolution Image Denoising Schemes Using Generalized Gaussian and Complexity Priors , 1999, IEEE Trans. Inf. Theory.

[11]  Minh N. Do,et al.  Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance , 2002, IEEE Trans. Image Process..

[12]  Zhou Wang,et al.  Local Phase Coherence and the Perception of Blur , 2003, NIPS.

[13]  Wilson S. Geisler,et al.  Multichannel Texture Analysis Using Localized Spatial Filters , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Prabir Kumar Biswas,et al.  Texture image retrieval using new rotated complex wavelet filters , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[15]  T. Randen,et al.  Multichannel filtering for image texture segmentation , 1994 .

[16]  Nick G. Kingsbury,et al.  Statistical Image Modelling Using Interscale Phase Relationships of Complex Wavelet Coefficients , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[17]  Phil Brodatz,et al.  Textures: A Photographic Album for Artists and Designers , 1966 .

[18]  Martin J. Wainwright,et al.  Image denoising using scale mixtures of Gaussians in the wavelet domain , 2003, IEEE Trans. Image Process..

[19]  Stphane Mallat,et al.  A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way , 2008 .

[20]  Justin K. Romberg,et al.  Bayesian tree-structured image modeling using wavelet-domain hidden Markov models , 2001, IEEE Trans. Image Process..

[21]  Michael T. Orchard,et al.  Image reconstruction from the phase or magnitude of its complex wavelet transform , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[22]  S. R. Jammalamadaka,et al.  Topics in Circular Statistics , 2001 .

[23]  M. Omair Ahmad,et al.  Statistics of 2-D DT-CWT Coefficients for a Gaussian Distributed Signal , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[24]  Michael Unser,et al.  Texture classification and segmentation using wavelet frames , 1995, IEEE Trans. Image Process..

[25]  Laurent Demanet,et al.  Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..

[26]  Kannan Ramchandran,et al.  Low-complexity image denoising based on statistical modeling of wavelet coefficients , 1999, IEEE Signal Processing Letters.

[27]  Tardi Tjahjadi,et al.  Adaptive scale fixing for multiscale texture segmentation , 2006, IEEE Transactions on Image Processing.

[28]  D. Wang,et al.  Image and Texture Segmentation Using Local Spectral Histograms , 2006, IEEE Transactions on Image Processing.

[29]  Eero P. Simoncelli Bayesian Denoising of Visual Images in the Wavelet Domain , 1999 .

[30]  Anil K. Jain,et al.  Unsupervised texture segmentation using Gabor filters , 1990, 1990 IEEE International Conference on Systems, Man, and Cybernetics Conference Proceedings.

[31]  Levent Sendur,et al.  Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency , 2002, IEEE Trans. Signal Process..

[32]  Soontorn Oraintara,et al.  Texture image retrieval using complex directional filter bank , 2006, 2006 IEEE International Symposium on Circuits and Systems.

[33]  H. Chauris,et al.  Uniform Discrete Curvelet Transform for Seismic Processing , 2008 .

[34]  Rongchun Zhao,et al.  Adaptive Segmentation of Textured Images by Using the Coupled Markov Random Field Model , 2006, IEEE Transactions on Image Processing.

[35]  N. Kingsbury Image processing with complex wavelets , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[36]  Richard G. Baraniuk,et al.  Multiscale image segmentation using wavelet-domain hidden Markov models , 2001, IEEE Trans. Image Process..

[37]  Edward H. Adelson,et al.  Shiftable multiscale transforms , 1992, IEEE Trans. Inf. Theory.

[38]  Silong Peng,et al.  Dual-tree complex wavelet hidden Markov tree model for image denoising , 2007 .

[39]  B. Vidakovic,et al.  Bayesian Inference in Wavelet-Based Models , 1999 .

[40]  Richard Baraniuk,et al.  The Dual-tree Complex Wavelet Transform , 2007 .

[41]  Dimitrios Charalampidis,et al.  Wavelet-based rotational invariant roughness features for texture classification and segmentation , 2002, IEEE Trans. Image Process..

[42]  S. Mallat A wavelet tour of signal processing , 1998 .

[43]  Trygve Randen,et al.  Filtering for Texture Classification: A Comparative Study , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[44]  H. Chipman,et al.  Adaptive Bayesian Wavelet Shrinkage , 1997 .

[45]  Nick G. Kingsbury,et al.  Unsupervised image segmentation via Markov trees and complex wavelets , 2002, Proceedings. International Conference on Image Processing.

[46]  Yunde Jia,et al.  Face recognition with local steerable phase feature , 2006, Pattern Recognit. Lett..

[47]  Michael T. Orchard,et al.  Image coding based on mixture modeling of wavelet coefficients and a fast estimation-quantization framework , 1997, Proceedings DCC '97. Data Compression Conference.

[48]  Soontorn Oraintara,et al.  The Shiftable Complex Directional Pyramid—Part I: Theoretical Aspects , 2008, IEEE Transactions on Signal Processing.

[49]  Zhou Wang,et al.  Translation insensitive image similarity in complex wavelet domain , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[50]  Nick G. Kingsbury,et al.  Determining Multiscale Image Feature Angles from Complex Wavelet Phases , 2005, ICIAR.

[51]  Minh N. Do,et al.  Rotation invariant texture characterization and retrieval using steerable wavelet-domain hidden Markov models , 2002, IEEE Trans. Multim..

[52]  Eero P. Simoncelli,et al.  A Parametric Texture Model Based on Joint Statistics of Complex Wavelet Coefficients , 2000, International Journal of Computer Vision.

[53]  Nick G. Kingsbury,et al.  Coarse-level object recognition using interlevel products of complex wavelets , 2005, IEEE International Conference on Image Processing 2005.

[54]  P. P. Vaidyanathan,et al.  Theory and design of two-dimensional filter Banks: A review , 1996, Multidimens. Syst. Signal Process..

[55]  B. S. Manjunath,et al.  Texture Features for Browsing and Retrieval of Image Data , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[56]  William E. Higgins,et al.  Texture Segmentation using 2-D Gabor Elementary Functions , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[57]  Julian Magarey,et al.  Motion estimation using a complex-valued wavelet transform , 1998, IEEE Trans. Signal Process..