An Experimentally Validated Steady State Polymer Electrolyte Membrane Water Electrolyser Model

[1]  Anastassios M. Stamatelos,et al.  Comparative performance analysis of grid-connected photovoltaic system by use of existing performance models , 2017 .

[2]  D. Brett,et al.  An Electrochemical Impedance Spectroscopy Study and Two Phase Flow Analysis of the Anode of a Polymer Electrolyte Membrane Water Electrolyser , 2015 .

[3]  H. Takenaka,et al.  Properties of Nafion membranes under PEM water electrolysis conditions , 2011 .

[4]  Mohan Kolhe,et al.  Equivalent electrical model for a proton exchange membrane (PEM) electrolyser , 2011 .

[5]  Massimo Santarelli,et al.  Analysis of water transport in a high pressure PEM electrolyzer , 2010 .

[6]  S. Grigoriev,et al.  Mathematical modeling of high-pressure PEM water electrolysis , 2010 .

[7]  M. E. Lebbal,et al.  Identification and monitoring of a PEM electrolyser based on dynamical modelling , 2009 .

[8]  Claude Etievant,et al.  GenHyPEM: A research program on PEM water electrolysis supported by the European Commission , 2009 .

[9]  Claude Etievant,et al.  Hydrogen-based PEM auxiliary power unit , 2009 .

[10]  B. Yi,et al.  Membrane water-flow rate in electrolyzer cells with a solid polymer electrolyte (SPE) , 2009 .

[11]  M. Santarelli,et al.  Fitting regression model and experimental validation for a high-pressure PEM electrolyzer , 2009 .

[12]  M. Santarelli,et al.  Theoretical model and experimental analysis of a high pressure PEM water electrolyser for hydrogen production , 2009 .

[13]  U. Schnakenberg,et al.  Performance of laboratory polymer electrolyte membrane hydrogen generator with sputtered iridium oxide anode , 2008 .

[14]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[15]  V. Sinigersky,et al.  Proton conductivity measurements of PEM performed in EasyTest Cell , 2008 .

[16]  A. J. Peters,et al.  A semiempirical study of the temperature dependence of the anode charge transfer coefficient of a 6 kW PEM electrolyzer , 2008 .

[17]  C. Bordons,et al.  Development and experimental validation of a PEM fuel cell dynamic model , 2007 .

[18]  Sirivatch Shimpalee,et al.  Numerical studies on rib & channel dimension of flow-field on PEMFC performance , 2007 .

[19]  V. Hacker,et al.  Electro-osmotic drag of methanol in proton exchange membranes , 2007 .

[20]  Jing Li,et al.  PEM fuel cell reaction kinetics in the temperature range of 23–120 °C , 2007 .

[21]  Massimo Santarelli,et al.  Parameters estimation of a PEM fuel cell polarization curve and analysis of their behavior with temperature , 2006 .

[22]  Shanhai Ge,et al.  Experimental determination of electro-osmotic drag coefficient in Nafion membrane for fuel cells , 2006 .

[23]  S. Grigoriev,et al.  Pure hydrogen production by PEM electrolysis for hydrogen energy , 2006 .

[24]  D. A. Noren,et al.  Clarifying the Butler–Volmer equation and related approximations for calculating activation losses in solid oxide fuel cell models , 2005 .

[25]  D. Bessarabov,et al.  A simple model for solid polymer electrolyte (SPE) water electrolysis , 2004 .

[26]  K. Onda,et al.  Performance analysis of polymer-electrolyte water electrolysis cell at a small-unit test cell and performance prediction of large stacked cell , 2002 .

[27]  Xianguo Li,et al.  An engineering model of proton exchange membrane fuel cell performance , 1998 .

[28]  Pierre Millet,et al.  Design and performance of a solid polymer electrolyte water electrolyzer , 1996 .

[29]  James F. McElroy,et al.  Recent advances in SPE® water electrolyzer , 1994 .

[30]  T. Springer,et al.  Water Uptake by and Transport Through Nafion® 117 Membranes , 1993 .

[31]  A. Parthasarathy,et al.  Temperature Dependence of the Electrode Kinetics of Oxygen Reduction at the Platinum/Nafion® Interface—A Microelectrode Investigation , 1992 .

[32]  T. Springer,et al.  Polymer Electrolyte Fuel Cell Model , 1991 .

[33]  M. Verbrugge,et al.  Mathematical model of a gas diffusion electrode bonded to a polymer electrolyte , 1991 .

[34]  C. Bowen,et al.  The Thermodynamics of Aqueous Water Electrolysis , 1980 .

[35]  John T. Milck Electrical Resistivity Data and Bibliography on Titanium and Titanium Alloys , 1970 .

[36]  A. Damjanović,et al.  Electrode Kinetics of Oxygen Evolution and Dissolution on Rh, Ir, and Pt‐Rh Alloy Electrodes , 1966 .

[37]  A. Goetz,et al.  The Electric Resistance and Anisotropy of Artificial Graphite Between 290° K. and 12° K , 1942 .

[38]  R. García‐Valverde,et al.  Simple PEM water electrolyser model and experimental validation , 2012 .

[39]  Caisheng Wang,et al.  Modeling and Control of Fuel Cells , 2009 .

[40]  Massimo Santarelli,et al.  Experimental analysis of the effects of the operating variables on the performance of a single PEMFC , 2007 .

[41]  M. Ni,et al.  Electrochemistry Modeling of Proton Exchange Membrane (PEM) Water Electrolysis for Hydrogen Production , 2006 .

[42]  H. Gorgun Dynamic modelling of a proton exchange membrane (PEM) electrolyzer , 2006 .

[43]  J. C. Amphlett Performance Modeling of the Ballard Mark IV Solid Polymer Electrolyte Fuel Cell , 1995 .

[44]  Frank C. Walsh,et al.  A first course in electrochemical engineering , 1993 .