HALS-based NMF with flexible constraints for hyperspectral unmixing

In this article, the hyperspectral unmixing problem is solved with the nonnegative matrix factorization (NMF) algorithm. The regularized criterion is minimized with a hierarchical alternating least squares (HALS) scheme. Under the HALS framework, four constraints are introduced to improve the unmixing accuracy, including the sum-to-unity constraint, the constraints for minimum spectral dispersion and maximum spatial dispersion, and the minimum volume constraint. The derived algorithm is called F-NMF, for NMF with flexible constraints. We experimentally compare F-NMF with different constraints and combined ones. We test the sensitivity and robustness of F-NMF to many parameters such as the purity level of endmembers, the number of endmembers and pixels, the SNR, the sparsity level of abundances, and the overestimation of endmembers. The proposed algorithm improves the results estimated by vertex component analysis. A comparative analysis on real data is included. The unmixing results given by a geometrical method, the simplex identification via split augmented Lagrangian and the F-NMF algorithms with combined constraints are compared, which shows the relative stability of F-NMF.

[1]  Chong-Yung Chi,et al.  A Convex Analysis-Based Minimum-Volume Enclosing Simplex Algorithm for Hyperspectral Unmixing , 2009, IEEE Transactions on Signal Processing.

[2]  M. Guillaume,et al.  Robust hyperspectral data unmixing with spatial and spectral regularized NMF , 2010, 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing.

[3]  Jean-Yves Tourneret,et al.  Bayesian separation of spectral sources under non-negativity and full additivity constraints , 2009, Signal Process..

[4]  D. Brie,et al.  Separation of Non-Negative Mixture of Non-Negative Sources Using a Bayesian Approach and MCMC Sampling , 2006, IEEE Transactions on Signal Processing.

[5]  Chong-Yung Chi,et al.  A convex analysis-based minimum-volume enclosing simplex algorithm for hyperspectral unmixing , 2009, IEEE Trans. Signal Process..

[6]  José M. Bioucas-Dias,et al.  A variable splitting augmented Lagrangian approach to linear spectral unmixing , 2009, 2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing.

[7]  José M. Bioucas-Dias,et al.  Does independent component analysis play a role in unmixing hyperspectral data? , 2003, IEEE Transactions on Geoscience and Remote Sensing.

[8]  Chein-I Chang,et al.  Estimation of number of spectrally distinct signal sources in hyperspectral imagery , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Mireille Guillaume,et al.  Minimum Dispersion Constrained Nonnegative Matrix Factorization to Unmix Hyperspectral Data , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Mario Winter,et al.  N-FINDR: an algorithm for fast autonomous spectral end-member determination in hyperspectral data , 1999, Optics & Photonics.

[11]  Hairong Qi,et al.  Endmember Extraction From Highly Mixed Data Using Minimum Volume Constrained Nonnegative Matrix Factorization , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[12]  Nicolas Gillis,et al.  Using underapproximations for sparse nonnegative matrix factorization , 2009, Pattern Recognit..

[13]  Saïd Moussaoui,et al.  Implementation Strategies for Hyperspectral Unmixing Using Bayesian Source Separation , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[14]  José M. Bioucas-Dias,et al.  Vertex component analysis: a fast algorithm to unmix hyperspectral data , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[15]  Sen Jia,et al.  Constrained Nonnegative Matrix Factorization for Hyperspectral Unmixing , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Nicolas Gillis,et al.  Nonnegative Factorization and The Maximum Edge Biclique Problem , 2008, 0810.4225.

[17]  A. Cichocki,et al.  Flexible HALS algorithms for sparse non-negative matrix/tensor factorization , 2008, 2008 IEEE Workshop on Machine Learning for Signal Processing.

[18]  Chein-I Chang,et al.  Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery , 2001, IEEE Trans. Geosci. Remote. Sens..

[19]  Yue Yu,et al.  Minimum distance constrained non-negative matrix factorization for the endmember extraction of hyperspectral images , 2007, International Symposium on Multispectral Image Processing and Pattern Recognition.

[20]  Dominique Lavenier,et al.  Using blocks of skewers for faster computation of pixel purity index , 2000, SPIE Optics + Photonics.

[21]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[22]  José M. Bioucas-Dias,et al.  Minimum Volume Simplex Analysis: A Fast Algorithm to Unmix Hyperspectral Data , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.