Frustration by design

By fabricating magnetic structures into nanoscale arrays, physicists can directly visualize how condensed-matter systems accommodate competing interactions among dipole moments and other degrees of freedom.

[1]  T. Lubensky,et al.  Geometric frustration in buckled colloidal monolayers , 2008, Nature.

[2]  Laura J. Heyderman,et al.  Real-space observation of emergent magnetic monopoles and associated Dirac strings in artificial kagome spin ice , 2011 .

[3]  G. Faini,et al.  Freezing and thawing of artificial ice by thermal switching of geometric frustration in magnetic flux lattices. , 2014, Nature nanotechnology.

[4]  R. Moessner,et al.  Magnetic multipole analysis of kagome and artificial spin-ice dipolar arrays , 2009, 0906.3937.

[5]  R. Stamps,et al.  Artificial ferroic systems: novel functionality from structure, interactions and dynamics , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[6]  Aaron Stein,et al.  Thermal ground-state ordering and elementary excitations in artificial magnetic square ice , 2011 .

[7]  J. Cumings,et al.  Direct observation of the ice rule in an artificial kagome spin ice , 2008, 0802.0034.

[8]  Monica L. Skoge,et al.  Packing hyperspheres in high-dimensional Euclidean spaces. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  A. Scholl,et al.  Direct observation of thermal relaxation in artificial spin ice. , 2013, Physical review letters.

[10]  J. Hastings,et al.  Direct imaging of coexisting ordered and frustrated sublattices in artificial ferromagnetic quasicrystals. , 2016, Physical review. B.

[11]  W. Kwok,et al.  Realization of artificial ice systems for magnetic vortices in a superconducting MoGe thin film with patterned nanostructures. , 2013, Physical review letters.

[12]  R. Moessner,et al.  Magnetic monopoles in spin ice , 2007, Nature.

[13]  Gia-Wei Chern,et al.  Crystallites of magnetic charges in artificial spin ice , 2013, Nature.

[14]  L. F. Cohen,et al.  Direct observation of magnetic monopole defects in an artificial spin-ice system , 2010 .

[15]  Andreas Scholl,et al.  Thermal fluctuations in artificial spin ice. , 2014, Nature nanotechnology.

[16]  Gia-Wei Chern,et al.  Two-stage ordering of spins in dipolar spin ice on the kagome lattice. , 2009, Physical review letters.

[17]  R. Chopdekar,et al.  Thermalized ground state of artificial kagome spin ice building blocks , 2012 .

[18]  A. Libál,et al.  Realizing colloidal artificial ice on arrays of optical traps. , 2006, Physical review letters.

[19]  V. Crespi,et al.  Artificial ‘spin ice’ in a geometrically frustrated lattice of nanoscale ferromagnetic islands , 2006, Nature.

[20]  Paolo Vavassori,et al.  Exploring thermally induced states in square artificial spin-ice arrays , 2013 .

[21]  Gia-Wei Chern,et al.  Emergent ice rule and magnetic charge screening from vertex frustration in artificial spin ice , 2014, Nature Physics.

[22]  I. Ryzhkin Magnetic relaxation in rare-earth oxide pyrochlores , 2005 .

[23]  C. Reichhardt,et al.  Creating artificial ice states using vortices in nanostructured superconductors. , 2008, Physical review letters.

[24]  S. Ladak,et al.  Emerging Chirality in Artificial Spin Ice , 2012, Science.

[25]  Roderich Moessner,et al.  Colloquium: Artificial spin ice : Designing and imaging magnetic frustration , 2013 .

[26]  Muir J. Morrison,et al.  Unhappy vertices in artificial spin ice: new degeneracies from vertex frustration , 2012, 1210.7843.

[27]  R. Moessner,et al.  Spin Ice, Fractionalization, and Topological Order , 2011, 1112.3793.