First-principles prediction of disordering tendencies in pyrochlore oxides

Using first-principles calculations, we systematically predict the order-disorder energetics of series of zirconate (A{sub 2}Zr{sub 2}O{sub 7}), hafnate (A{sub 2}Hf{sub 2}O{sub 7}), titanate (A{sub 2}Ti{sub 2}O{sub 7}), and stannate (A{sub 2}Sn{sub 2}O{sub 7}) pyrochlores. The disordered defect-fluorite structure is modeled using an 88-atom two-sublattice special quasirandom structure (SQS) that closely reproduces the most relevant near-neighbor intrasublattice and intersublattice pair-correlation functions of the random mixture. The order-disorder transition temperatures of these pyrochlores estimated from our SQS calculations show overall good agreement with existing experiments. We confirm previous studies suggesting that the bonding in pyrochlores is not purely ionic and thus electronic effects also play a role in determining their disordering tendencies. Our results have important consequences for numerous applications, including nuclear waste forms and fast ion conductors.

[1]  William J. Weber,et al.  Theoretical study of disorder in Ti-substituted La 2 Zr 2 O 7 , 2002 .

[2]  Kevin W. Eberman,et al.  Order-disorder phenomena in A2B2O7 pyrochlore oxides , 2000 .

[3]  Brett A. Hunter,et al.  Structural and Bonding Trends in Tin Pyrochlore Oxides , 1997 .

[4]  R. Withers,et al.  The oxygen positional parameter in pyrochlores and its dependence on disorder. , 2002 .

[5]  S. M. Corish,et al.  Radiation-induced amorphization resistance and radiation tolerance in structurally related oxides. , 2007, Nature materials.

[6]  M. Nastasi,et al.  Thermodynamics and kinetics of phase transformations induced by ion irradiation , 1991 .

[7]  R. Withers,et al.  Systematic Structural Change in Selected Rare Earth Oxide Pyrochlores as Determined by Wide-Angle CBED and a Comparison with the Results of Atomistic Computer Simulation , 2000 .

[8]  Ceder,et al.  Model for configurational thermodynamics in ionic systems. , 1995, Physical review letters.

[9]  Jie Lian,et al.  Ion-irradiation-induced amorphization of La 2 Zr 2 O 7 pyrochlore , 2002 .

[10]  X. Zu,et al.  Theoretical investigation of structural, energetic and electronic properties of titanate pyrochlores , 2007 .

[11]  Jorge O. Sofo,et al.  First-principles study of binary bcc alloys using special quasirandom structures , 2004 .

[12]  J. Wang,et al.  Processing of magnesia-pyrochlore composites for inert matrix materials , 2007 .

[13]  H. Tuller Oxygen ion conduction and structural disorder in conductive oxides , 1994 .

[14]  Ferreira,et al.  Electronic properties of random alloys: Special quasirandom structures. , 1990, Physical review. B, Condensed matter.

[15]  Hartmann,et al.  Radiation tolerance of complex oxides , 2000, Science.

[16]  A. K. Tyagi,et al.  Preparation, XRD and Raman spectroscopic studies on new compounds RE2Hf2O7 (RE=Dy, Ho, Er, Tm, Lu, Y): Pyrochlores or defect-fluorite? , 2006 .

[17]  William J. Weber,et al.  Radiation stability of gadolinium zirconate: A waste form for plutonium disposition , 1999 .

[18]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[19]  Jian Chen,et al.  Radiation-induced amorphization of rare-earth titanate pyrochlores , 2003 .

[20]  E. Andrievskaya Phase equilibria in the refractory oxide systems of zirconia, hafnia and yttria with rare-earth oxides , 2008 .

[21]  X. Zu,et al.  First-principles study of structural and energetic properties of A2Hf2O7 (A=Dy, Ho, Er) compounds , 2008 .

[22]  Ferreira,et al.  Special quasirandom structures. , 1990, Physical review letters.

[23]  R. Grimes,et al.  Prediction of Rare‐Earth A2Hf2O7 Pyrochlore Phases , 2002 .

[24]  Robin W. Grimes,et al.  Disorder in Pyrochlore Oxides , 2004 .

[25]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[26]  J. Somers,et al.  The thermal conductivity of Nd2Zr2O7 pyrochlore and the thermal behaviour of pyrochlore-based inert matrix fuel , 2003 .

[27]  Lars Stixrude,et al.  First-principles calculation of defect-formation energies in the Y 2 (Ti,Sn,Zr) 2 O 7 pyrochlore , 2004 .

[28]  M. Nastasi,et al.  Cation disorder in high-dose, neutron-irradiated spinel , 1995 .

[29]  Katherine L. Smith,et al.  Nature of the chemical bond and prediction of radiation tolerance in pyrochlore and defect fluorite compounds , 2007 .

[30]  G. Bertrand,et al.  Full potential linearized augmented plane wave investigations of structural and electronic properties of pyrochlore systems , 2004 .

[31]  R. Ewing,et al.  Effect of structure and thermodynamic stability on the response of lanthanide stannate pyrochlores to ion beam irradiation. , 2006, The journal of physical chemistry. B.

[32]  R. Grimes,et al.  Predicted pyrochlore to fluorite disorder temperature for A_2Zr_2O_7 compositions , 2004 .

[33]  X. Zu,et al.  Structural and bonding properties of stannate pyrochlores : A density functional theory investigation , 2008 .

[34]  C. Catlow,et al.  Defects and diffusion in pyrochlore structured oxides , 1998 .

[35]  Fei Gao,et al.  First-principles study of electronic properties of La2Hf2O7 and Gd2Hf2O7 , 2007 .