Hybrid simulation between molecular dynamics and binary collision approximation codes for hydrogen injection into carbon materials

Abstract Molecular dynamics (MD) simulation with modified Brenner’s reactive empirical bond order (REBO) potential is a powerful tool to investigate plasma wall interaction on divertor plates in a nuclear fusion device. However, the size of MD simulation box is generally set less than several nm because of the limits of a computer performance. To extend the size of the MD simulation, we develop a hybrid simulation code between MD code using REBO potential and binary collision approximation (BCA) code. Using the BCA code instead of computing all particles with a high kinetic energy for every step in the MD simulation, considerable computation time is saved. By demonstrating a hydrogen atom injection into a graphite by the hybrid simulation code, it is found that the hybrid simulation code works efficiently in a large simulation box.