Simulation of a L\'evy process, its extremum, and hitting time of the extremum via characteristic functions

We suggest a general framework for simulation of the triplet $(X_T,\bar X_ T,\tau_T)$ (L\'evy process, its extremum, and hitting time of the extremum), and, separately, $X_T,\bar X_ T$ and pairs $(X_T,\bar X_ T)$, $(\bar X_ T,\tau_T)$, $(\bar X_ T-X_T,\tau_T)$, via characteristic functions and conditional characteristic functions. The conformal deformations technique allows one to evaluate probability distributions, joint probability distributions and conditional probability distributions accurately and fast. For simulations in the far tails of the distribution, we precalculate and store the values of the (conditional) characteristic functions on multi-grids on appropriate surfaces in $C^n$, and use these values to calculate the quantiles in the tails. For simulation in the central part of a distribution, we precalculate the values of the cumulative distribution at points of a non-uniform (multi-)grid, and use interpolation to calculate quantiles.

[1]  S. Levendorskii,et al.  Efficient evaluation of joint pdf of a L\'evy process, its extremum, and hitting time of the extremum , 2023, Social Science Research Network.

[2]  S. Levendorskii,et al.  Alternative models for FX, arbitrage opportunities and efficient pricing of double barrier options in L\'evy models , 2023, SSRN Electronic Journal.

[3]  S. Boyarchenko,et al.  Efficient Evaluation of Double-Barrier Options and Joint CPDF of a Levy Process and Its Two Extrema , 2022, SSRN Electronic Journal.

[4]  S. Levendorskii,et al.  Efficient evaluation of expectations of functions of a stable Lévy process and its extremum , 2022, SSRN Electronic Journal.

[5]  S. Boyarchenko,et al.  Efficient Evaluation of Expectations of Functions of a Lévy Process and Its Extremum , 2022, SSRN Electronic Journal.

[6]  S. Boyarchenko,et al.  Levy Models Amenable to Efficient Calculations , 2022, SSRN Electronic Journal.

[7]  Aleksandar Mijatovi'c,et al.  Simulation of the drawdown and its duration in Lévy models via stick-breaking Gaussian approximation , 2020, Finance and Stochastics.

[8]  Jorge Ignacio Gonz'alez C'azares,et al.  Joint density of the stable process and its supremum: Regularity and upper bounds , 2020, Bernoulli.

[9]  S. Levendorskii,et al.  Conformal Accelerations Method and Efficient Evaluation of Stable Distributions , 2020, Acta Applicandae Mathematicae.

[10]  S. Levendorskii,et al.  Static and semistatic hedging as contrarian or conformist bets , 2019, Mathematical Finance.

[11]  Aleksandar Mijatovi'c,et al.  Geometrically Convergent Simulation of the Extrema of Lévy Processes , 2018, Math. Oper. Res..

[12]  S. Levendorskii,et al.  New Families of Integral Representations and Efficient Evaluation of Stable Distributions , 2018 .

[13]  S. Levendorskii,et al.  Sinh-Acceleration: Efficient Evaluation of Probability Distributions, Option Pricing, and Monte-Carlo Simulations , 2018, International Journal of Theoretical and Applied Finance.

[14]  S. Levendorskii Fractional-Parabolic Deformations with Sinh-Acceleration , 2016 .

[15]  S. Levendorskii Conformal Pseudo-Asymptotics and Special Functions , 2016 .

[16]  S. Levendorskii Method of Paired Contours and Pricing Barrier Options and CDs of Long Maturities , 2013 .

[17]  Ioannis Kyriakou,et al.  Monte Carlo Simulation of the CGMY Process and Option Pricing , 2013 .

[18]  S. Levendorskii,et al.  Efficient Pricing and Reliable Calibration in the Heston Model , 2012 .

[19]  Xiong Lin,et al.  Simulating Lévy Processes from Their Characteristic Functions and Financial Applications , 2011, TOMC.

[20]  Xiong Lin,et al.  Inverting Analytic Characteristic Functions and Financial Applications , 2011, SIAM J. Financial Math..

[21]  P. Glasserman,et al.  Estimating Greeks in simulating Lévy-driven models , 2010 .

[22]  J. C. Pardo,et al.  A Wiener–Hopf Monte Carlo simulation technique for Lévy processes , 2009, 0912.4743.

[23]  S. Levendorskii,et al.  Prices of Barrier and First-Touch Digital Options in Levy-Driven Models, Near Barrier , 2009 .

[24]  Sergei Levendorskii,et al.  Fast and accurate pricing of barrier options under Lévy processes , 2009, Finance Stochastics.

[25]  Paul Glasserman,et al.  Sensitivity estimates from characteristic functions , 2007, 2007 Winter Simulation Conference.

[26]  S. Levendorskii Early exercise boundary and option prices in Lévy driven models , 2004 .

[27]  S. Z. Levendorski,et al.  Early exercise boundary and option prices in Levy driven models , 2004 .

[28]  S. Levendorskii,et al.  Perpetual American options under Levy processes , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[29]  S. Levendorskii,et al.  Barrier options and touch- and-out options under regular Lévy processes of exponential type , 2002 .

[30]  Svetlana Boyarchenko,et al.  Perpetual American Options Under L[e-acute]vy Processes , 2001, SIAM J. Control. Optim..

[31]  S. Asmussen,et al.  Approximations of small jumps of Lévy processes with a view towards simulation , 2001, Journal of Applied Probability.

[32]  R. Weron Correction to: "On the Chambers–Mallows–Stuck Method for Simulating Skewed Stable Random Variables" , 1996 .

[33]  D. Applebaum Stable non-Gaussian random processes , 1995, The Mathematical Gazette.

[34]  F. Stenger Numerical Methods Based on Sinc and Analytic Functions , 1993 .

[35]  C. Mallows,et al.  A Method for Simulating Stable Random Variables , 1976 .

[36]  S. Levendorskii,et al.  Non-Gaussian Merton-Black-Scholes theory , 2002 .

[37]  Ritu Agarwal,et al.  WORKING PAPER , 1994 .