Size Tunable and Controllable Synthesis of Pbs Quantum Dots for Boardband Photoelectric Response

[1]  E. Sargent,et al.  Synthesis-on-substrate of quantum dot solids. , 2022, Nature.

[2]  Liang Gao,et al.  A near-infrared colloidal quantum dot imager with monolithically integrated readout circuitry , 2022, Nature Electronics.

[3]  Weida Hu,et al.  Silicon: quantum dot photovoltage triodes , 2021, Nature Communications.

[4]  V. Wood,et al.  Colloidal quantum dot electronics , 2021, Nature Electronics.

[5]  N. Zhao,et al.  Integration of Colloidal Quantum Dots with Photonic Structures for Optoelectronic and Optical Devices , 2021, Advanced science.

[6]  D. Garcia-Gutierrez,et al.  Absorption and emission in the visible range by ultra-small PbS quantum dots in the strong quantum confinement regime with S-terminated surfaces capped with diphenylphosphine , 2021 .

[7]  R. Schaller,et al.  Colloidal quantum dot lasers , 2021, Nature Reviews Materials.

[8]  M. Xing,et al.  Modeling of Nucleation and Growth in the Synthesis of PbS Colloidal Quantum Dots Under Variable Temperatures , 2021, ACS omega.

[9]  Liang Gao,et al.  Facet Control for Trap‐State Suppression in Colloidal Quantum Dot Solids , 2020, Advanced Functional Materials.

[10]  F. P. García de Arquer,et al.  Solution-processed upconversion photodetectors based on quantum dots , 2020 .

[11]  O. Vázquez-Mena,et al.  Optoelectronic response of hybrid PbS-QD/graphene photodetectors. , 2019, The Journal of chemical physics.

[12]  Lei Tian,et al.  Highly Stabilized Quantum Dot Ink for Efficient Infrared Light Absorbing Solar Cells , 2019, Advanced Energy Materials.

[13]  S. Qiao,et al.  Near-Infrared Active Lead Chalcogenide Quantum Dots: Preparation, Post-Synthesis Ligand Exchange, and Applications in Solar Cells. , 2019, Angewandte Chemie.

[14]  E. Sargent,et al.  Low‐Temperature‐Processed Colloidal Quantum Dots as Building Blocks for Thermoelectrics , 2019, Advanced Energy Materials.

[15]  Weiwei Li,et al.  Hybrid Organic/PbS Quantum Dot Bilayer Photodetector with Low Dark Current and High Detectivity , 2018 .

[16]  Lei Tian,et al.  Inorganic CsPbI3 Perovskite Coating on PbS Quantum Dot for Highly Efficient and Stable Infrared Light Converting Solar Cells , 2018 .

[17]  D. Garcia-Gutierrez,et al.  Influence of the Capping Ligand on the Band Gap and Electronic Levels of PbS Nanoparticles through Surface Atomistic Arrangement Determination , 2018, ACS omega.

[18]  Jizheng Wang,et al.  Bilayer PbS Quantum Dots for High‐Performance Photodetectors , 2017, Advanced materials.

[19]  Oleksandr Voznyy,et al.  Pseudohalide‐Exchanged Quantum Dot Solids Achieve Record Quantum Efficiency in Infrared Photovoltaics , 2017, Advanced materials.

[20]  Y. Tachibana,et al.  Monodisperse and size-tunable PbS colloidal quantum dots via heterogeneous precursors , 2017 .

[21]  Aram Amassian,et al.  Hybrid organic-inorganic inks flatten the energy landscape in colloidal quantum dot solids. , 2017, Nature materials.

[22]  N. Spooner,et al.  Versatile PbS Quantum Dot Ligand Exchange Systems in the Presence of Pb-Thiolates. , 2017, Small.

[23]  J. K. Gurchiek,et al.  Rapid and facile synthesis of high-quality, oleate-capped PbS nanocrystals , 2016 .

[24]  Frank H. L. Koppens,et al.  Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor , 2016, Nature Communications.

[25]  E. Sargent,et al.  Colloidal quantum dot ligand engineering for high performance solar cells , 2016 .

[26]  Edward H. Sargent,et al.  Colloidal quantum dot solids for solution-processed solar cells , 2016, Nature Energy.

[27]  Taeghwan Hyeon,et al.  The surface science of nanocrystals. , 2016, Nature materials.

[28]  R. Curry,et al.  Lead sulphide nanocrystal photodetector technologies , 2016, Nature Photonics.

[29]  G. Conibeer,et al.  Air-stable PbS quantum dots synthesized with slow reaction kinetics via a PbBr2 precursor , 2015 .

[30]  M. Bawendi,et al.  A colloidal quantum dot spectrometer , 2015, Nature.

[31]  Jianbo Gao,et al.  Synthetic Conditions for High-Accuracy Size Control of PbS Quantum Dots. , 2015, The journal of physical chemistry letters.

[32]  Kartik Srinivasan,et al.  Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission , 2015, Nature Communications.

[33]  G. Gigli,et al.  "Darker-than-black" PbS quantum dots: enhancing optical absorption of colloidal semiconductor nanocrystals via short conjugated ligands. , 2015, Journal of the American Chemical Society.

[34]  Liang Gao,et al.  Synergetic Effect of Silver Nanocrystals Applied in PbS Colloidal Quantum Dots for High-Performance Infrared Photodetectors , 2014 .

[35]  Aram Amassian,et al.  Air-stable n-type colloidal quantum dot solids. , 2014, Nature materials.

[36]  Noah D Bronstein,et al.  Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid , 2014, Science.

[37]  Moungi G Bawendi,et al.  Energy level modification in lead sulfide quantum dot thin films through ligand exchange. , 2014, ACS nano.

[38]  A. Amassian,et al.  High‐Performance Quantum‐Dot Solids via Elemental Sulfur Synthesis , 2014, Advanced materials.

[39]  W. Tisdale,et al.  Monodisperse, air-stable PbS nanocrystals via precursor stoichiometry control. , 2014, ACS nano.

[40]  Moungi G. Bawendi,et al.  Improved performance and stability in quantum dot solar cells through band alignment engineering , 2014, Nature materials.

[41]  Jianbo Gao,et al.  Diffusion-controlled synthesis of PbS and PbSe quantum dots with in situ halide passivation for quantum dot solar cells. , 2014, ACS nano.

[42]  A. Rogach,et al.  Quantum dot field effect transistors , 2013 .

[43]  O. Voznyy,et al.  Graded Doping for Enhanced Colloidal Quantum Dot Photovoltaics , 2013, Advanced materials.

[44]  V. Bulović,et al.  Emergence of colloidal quantum-dot light-emitting technologies , 2012, Nature Photonics.

[45]  Oleksandr Voznyy,et al.  All‐Inorganic Colloidal Quantum Dot Photovoltaics Employing Solution‐Phase Halide Passivation , 2012, Advanced materials.

[46]  Aram Amassian,et al.  Hybrid passivated colloidal quantum dot solids. , 2012, Nature nanotechnology.

[47]  Larissa Levina,et al.  Quantum junction solar cells. , 2012, Nano letters.

[48]  G. Konstantatos,et al.  Hybrid graphene-quantum dot phototransistors with ultrahigh gain. , 2011, Nature nanotechnology.

[49]  Aram Amassian,et al.  Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. , 2011, Nature materials.

[50]  Ratan Debnath,et al.  Depleted Bulk Heterojunction Colloidal Quantum Dot Photovoltaics , 2011, Advanced materials.

[51]  M. Kovalenko,et al.  Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays. , 2011, Nature nanotechnology.

[52]  Zeger Hens,et al.  Size-tunable, bright, and stable PbS quantum dots: a surface chemistry study. , 2011, ACS nano.

[53]  I. Moreels,et al.  Size-dependent optical properties of colloidal PbS quantum dots. , 2009, ACS nano.

[54]  Ghada I. Koleilat,et al.  NIR-emitting colloidal quantum dots having 26% luminescence quantum yield in buffer solution. , 2007, Journal of the American Chemical Society.

[55]  G. Konstantatos,et al.  Ultrasensitive solution-cast quantum dot photodetectors , 2006, Nature.

[56]  Ludovico Cademartiri,et al.  Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals. , 2006, The journal of physical chemistry. B.

[57]  Akiyoshi Hoshino,et al.  Applications of T-lymphoma labeled with fluorescent quantum dots to cell tracing markers in mouse body. , 2004, Biochemical and biophysical research communications.

[58]  Gregory D. Scholes,et al.  Colloidal PbS Nanocrystals with Size‐Tunable Near‐Infrared Emission: Observation of Post‐Synthesis Self‐Narrowing of the Particle Size Distribution , 2003 .

[59]  E. Sargent,et al.  Size-tunable infrared (1000–1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer , 2003 .

[60]  Christopher B. Murray,et al.  Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies , 2000 .

[61]  R. Friesner,et al.  Quantum Confinement Effects in CdSe Quantum Dots , 1995 .

[62]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[63]  L. Brus,et al.  Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution , 1983 .

[64]  Jiang Tang,et al.  Synergistic Effect of Hybrid PbS Quantum Dots/2D‐WSe2 Toward High Performance and Broadband Phototransistors , 2017 .

[65]  Edward H. Sargent,et al.  Solution-processed semiconductors for next-generation photodetectors , 2017 .

[66]  Gabriele Navickaite,et al.  Hybrid 2D–0D MoS2–PbS Quantum Dot Photodetectors , 2015, Advanced materials.

[67]  Larissa Levina,et al.  Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors. , 2009, Nature nanotechnology.

[68]  M. Bruchez,et al.  Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots , 2003, Nature Biotechnology.