Communicating Applied Mathematics: Four Examples
暂无分享,去创建一个
Ilse C. F. Ipsen | Daniel E. Finkel | Christopher M. Kuster | Matthew S. Lasater | Rachel Levy | Jill P. Reese | D. Finkel | M. Lasater | Jill P. Reese | R. Levy | C. M. Kuster
[1] J. A. Sethian,et al. Fast Marching Methods , 1999, SIAM Rev..
[2] R. Behringer,et al. Reverse undercompressive shock structures in driven thin film flow. , 2002, Physical review letters.
[3] Owen J. Eslinger,et al. IFFCO: implicit filtering for constrained optimization, version 2 , 1999 .
[4] H. P. Greenspan,et al. On the motion of a small viscous droplet that wets a surface , 1978, Journal of Fluid Mechanics.
[5] Gunnar Aronsson. A Mathematical Model in Sand Mechanics: Presentation and Analysis , 1972 .
[6] G. D. Byrne,et al. VODE: a variable-coefficient ODE solver , 1989 .
[7] Y. Kuznetsov. Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.
[8] F. Heslot,et al. Fingering instability of thin spreading films driven by temperature gradients , 1990, Nature.
[9] E. Lightfoot,et al. The dynamics of thin liquid films in the presence of surface‐tension gradients , 1971 .
[10] Michael Shearer,et al. Comparison of two dynamic contact line models for driven thin liquid films , 2004, European Journal of Applied Mathematics.
[11] Y. Kuznetsov. Elements of applied bifurcation theory (2nd ed.) , 1998 .
[12] O. Oleinik. Discontinuous solutions of non-linear differential equations , 1963 .
[13] P. Gennes. Wetting: statics and dynamics , 1985 .
[14] M. Shearer,et al. Undercompressive shocks and Riemann problems for scalar conservation laws with non-convex fluxes , 1999, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[15] Vladimir Rakocevic. On the Norm of Idempotent Operators in a Hilbert Space , 2000, Am. Math. Mon..
[16] P. Lions,et al. Viscosity solutions of Hamilton-Jacobi equations , 1983 .
[17] Carl Tim Kelley,et al. Iterative methods for optimization , 1999, Frontiers in applied mathematics.
[18] Kevin Zumbrun,et al. Stability of compressive and undercompressive thin film travelling waves , 2001, European Journal of Applied Mathematics.
[19] T. C. L. G. Sollner,et al. Quantum well oscillators , 1984 .
[20] H. Cui,et al. Dynamical instabilities andI−Vcharacteristics in resonant tunneling through double-barrier quantum well systems , 2001 .
[21] David E. Stewart,et al. Rigid-Body Dynamics with Friction and Impact , 2000, SIAM Rev..
[22] P. Lax. Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves , 1987 .
[23] D. Acheson. Elementary Fluid Dynamics , 1990 .
[24] J. Tsitsiklis,et al. Efficient algorithms for globally optimal trajectories , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.
[25] Arlen W. Harbaugh,et al. User's documentation for MODFLOW-96, an update to the U.S. Geological Survey modular finite-difference ground-water flow model , 1996 .
[26] B. Gelmont,et al. THz-Spectroscopy of Biological Molecules , 2003, Journal of biological physics.
[27] Andrea L. Bertozzi,et al. Thin Film Traveling Waves and the Navier Slip Condition , 2003, SIAM J. Appl. Math..
[28] T. Sollner,et al. Resonant tunneling through quantum wells at frequencies up to 2.5 THz , 1983 .
[29] Elizabeth A. Burroughs,et al. LOCA 1.0 Library of Continuation Algorithms: Theory and Implementation Manual , 2002 .
[30] P. Gilmore,et al. IFFCO (Implicit filtering for constrained optimization), users' guide , 1993 .
[31] Andrea L. Bertozzi,et al. Existence of Undercompressive Traveling Waves in Thin Film Equations , 2000, SIAM J. Math. Anal..
[32] Philippe G. LeFloch,et al. Non-classical Riemann solvers with nucleation , 2004, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[33] S. H. Davis,et al. On the motion of a fluid-fluid interface along a solid surface , 1974, Journal of Fluid Mechanics.
[34] A. Bertozzi. THE MATHEMATICS OF MOVING CONTACT LINES IN THIN LIQUID FILMS , 1998 .
[35] Lee A. Segel,et al. Mathematics applied to deterministic problems in the natural sciences , 1974, Classics in applied mathematics.
[36] Daniel N. Ostrov. Solutions of Hamilton–Jacobi Equations and Scalar Conservation Laws with Discontinuous Space–Time Dependence , 2002 .
[37] P. Domenico,et al. Physical and chemical hydrogeology , 1990 .
[38] M. Shearer,et al. Kinetics and nucleation for driven thin film flow , 2005 .
[39] Andrea L. Bertozzi,et al. Linear stability and transient growth in driven contact lines , 1997 .
[40] S. Zagatti. On viscosity solutions of Hamilton-Jacobi equations , 2008 .
[41] Cass T. Miller,et al. Optimal design for problems involving flow and transport phenomena in saturated subsurface systems , 2002 .
[42] B. McKinney,et al. Traveling Wave Solutions of the Modified Korteweg-deVries-Burgers Equation , 1995 .
[43] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[44] J. Mayer,et al. On the Quantum Correction for Thermodynamic Equilibrium , 1947 .
[45] B. Gelmont,et al. Creation and quenching of interference-induced emitter-quantum wells within double-barrier tunneling structures , 2003 .
[46] M. Born. Principles of Optics : Electromagnetic theory of propagation , 1970 .
[47] Panos J. Antsaklis,et al. Linear Systems , 1997 .
[48] Lou Kondic,et al. Instabilities in Gravity Driven Flow of Thin Fluid Films , 2003, SIAM Rev..
[49] Christopher M. Kuster,et al. Volume determination for bulk materials in bunkers , 2004 .
[50] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[51] Matthias Born,et al. Principles of Optics: Electromagnetic Theory of Propa-gation, Interference and Di raction of Light , 1999 .
[52] Nicholas J. Higham,et al. Handbook of writing for the mathematical sciences , 1993 .
[53] D. Quéré,et al. Thickness and Shape of Films Driven by a Marangoni Flow , 1996 .
[54] Steven G. Krantz,et al. A Primer of Mathematical Writing , 1999 .
[55] Andrea L. Bertozzi,et al. Undercompressive shocks in thin film flows , 1999 .