mean value property and zeros of holomorphic functions (Gauss, Poisson, Bolzano, and Cauchy meet in the complex plane)
暂无分享,去创建一个
[1] B. Chakraborty. A simple proof of the Fundamental Theorem of Algebra , 2022, Elemente der Mathematik.
[2] J. Mawhin. Bolzano’s theorems for holomorphic mappings , 2017 .
[3] A. Throop. The Fundamental Theorem of Algebra , 2015 .
[4] Bao Qin Li,et al. A Direct Proof and a Transcendental Version of the Fundamental Theorem of Algebra via Cauchy's Theorem , 2014, Am. Math. Mon..
[5] Alan C. Lazer,et al. The Fundamental Theorem of Algebra via the Fourier Inversion Formula , 2010, Am. Math. Mon..
[6] Anton R. Schep,et al. A Simple Complex Analysis and an Advanced Calculus Proof of the Fundamental Theorem of Algebra , 2009, Am. Math. Mon..
[7] A. Lazer. From the Cauchy-Riemann Equations to the Fundamental Theorem of Algebra , 2006 .
[8] R. Remmert,et al. Theory of Complex Functions , 1990 .
[9] Mau-Hsiang Shih. An Analog of Bolzano's Theorem for Functions of a Complex Variable , 1982 .
[10] J. Mawhin,et al. Brouwer Degree , 2021 .
[11] R. Výborný. A simple proof of the Fundamental Theorem of Algebra , 2010 .
[12] O. D. Kellogg,et al. Invariant points in function space , 1922 .
[13] G. B. M.,et al. Introduction à la théorie des fonctions d'une variable , 1911, Nature.