De Novo Coding Variants Are Strongly Associated with Tourette Disorder

Jeffrey D. Mandell | Michael F. Walker | Stephan J Sanders | N. Freimer | B. Leventhal | B. Neale | N. Cox | M. Okun | D. Posthuma | J. Leckman | V. Roessner | Jinchuan Xing | M. State | H. Singer | S. Kuperman | G. Coppola | K. Samocha | Dongmei Yu | J. Scharf | L. Davis | J. Sul | V. Ramensky | G. Lyon | M. Grados | D. Pauls | R. King | I. Heyman | C. Huyser | D. Gilbert | A. Willsey | Y. Bromberg | P. Hoekstra | M. Robertson | P. Sandor | G. Rouleau | I. Malaty | J. Tischfield | R. Kurlan | A. Morer | K. Plessen | C. Mathews | A. Münchau | D. Cath | K. Cheon | Young-Shin Kim | Yun-Joo Koh | L. Osiecki | C. Barr | R. Bruun | C. Budman | S. Chouinard | Y. Dion | T. Fernandez | G. Heiman | C. Illmann | A. Huang | P. Mir | Shan Dong | A. Dietrich | Petra Richer | L. Smith | M. Abdulkadir | J. Bohnenpoll | L. Brown | B. Coffey | L. Deng | Lonneke Elzerman | O. Fründt | B. Garcia-Delgar | E. Gedvilaite | D. Grice | Julie Hagstrøm | T. Hedderly | H. Hong | Laura Ibanez-Gomez | Y. Kim | S. Kook | A. Lamerz | A. Ludolph | Claudia Lühr da Silva | M. Madruga-Garrido | A. Maras | T. Murphy | Cara Nasello | T. Openneer | Eun-Young Shin | D. Sival | D. Song | Jungeun Song | Anne-Marie Stolte | Nawei Sun | J. Tübing | F. Visscher | Sina Wanderer | Shuoguo Wang | Martin L. Woods | Yeting Zhang | Anbo Zhou | S. Zinner | J. Batterson | C. Berlin | S. Darrow | M. Hirschtritt | William M. MaMahon | Jan Smit | Matthew E. Hirschtritt | N. Cox | N. Sun | M. Madruga‐Garrido | Eun-young Shin | Erika Gedvilaite | Jennifer Tübing | L. Davis | Alden Huang

[1]  R. Hennekam,et al.  Behaviour in Cornelia de Lange syndrome: a systematic review , 2017, Developmental medicine and child neurology.

[2]  Deciphering Developmental Disorders Study,et al.  Prevalence and architecture of de novo mutations in developmental disorders , 2017, Nature.

[3]  Michael R. Johnson,et al.  De novo mutations in synaptic transmission genes including DNM1 cause epileptic encephalopathies. , 2014, American journal of human genetics.

[4]  Rita M Cantor,et al.  Rare Inherited and De Novo CNVs Reveal Complex Contributions to ASD Risk in Multiplex Families. , 2016, American journal of human genetics.

[5]  Michael R. Johnson,et al.  De Novo Mutations in SLC1A2 and CACNA1A Are Important Causes of Epileptic Encephalopathies. , 2016, American journal of human genetics.

[6]  I. Krantz,et al.  NIPBL expression levels in CdLS probands as a predictor of mutation type and phenotypic severity , 2016, American journal of medical genetics. Part C, Seminars in medical genetics.

[7]  Nuno A. Fonseca,et al.  Expression Atlas update—an integrated database of gene and protein expression in humans, animals and plants , 2015, Nucleic Acids Res..

[8]  Stephan J Sanders,et al.  De novo mutations in congenital heart disease with neurodevelopmental and other congenital anomalies , 2015, Science.

[9]  Christopher S. Poultney,et al.  Insights into Autism Spectrum Disorder Genomic Architecture and Biology from 71 Risk Loci , 2015, Neuron.

[10]  P. Lichtenstein,et al.  Familial Risks of Tourette Syndrome and Chronic Tic Disorders. A Population-Based Cohort Study. , 2015, JAMA psychiatry.

[11]  A. Goffinet,et al.  Celsr3 and Fzd3 in axon guidance. , 2015, The international journal of biochemistry & cell biology.

[12]  Stefan N Hansen,et al.  Familial clustering of tic disorders and obsessive-compulsive disorder. , 2015, JAMA psychiatry.

[13]  W. McMahon,et al.  Lifetime prevalence, age of risk, and genetic relationships of comorbid psychiatric disorders in Tourette syndrome. , 2015, JAMA psychiatry.

[14]  Yoav Ben-Shlomo,et al.  Population prevalence of Tourette syndrome: A systematic review and meta‐analysis , 2015, Movement disorders : official journal of the Movement Disorder Society.

[15]  Matthew W State,et al.  Autism spectrum disorders: from genes to neurobiology , 2015, Current Opinion in Neurobiology.

[16]  Tomas W. Fitzgerald,et al.  Large-scale discovery of novel genetic causes of developmental disorders , 2014, Nature.

[17]  Boris Yamrom,et al.  The contribution of de novo coding mutations to autism spectrum disorder , 2014, Nature.

[18]  Christopher S. Poultney,et al.  Synaptic, transcriptional, and chromatin genes disrupted in autism , 2014, Nature.

[19]  Kathryn Roeder,et al.  De novo insertions and deletions of predominantly paternal origin are associated with autism spectrum disorder. , 2014, Cell reports.

[20]  Epilepsy Phenome,et al.  De novo mutations in synaptic transmission genes including DNM1 cause epileptic encephalopathies. , 2014, American journal of human genetics.

[21]  M. Manto,et al.  Celsr3 is required in motor neurons to steer their axons in the hindlimb , 2014, Nature Neuroscience.

[22]  Dan J Stein,et al.  Copy number variation in obsessive-compulsive disorder and tourette syndrome: a cross-disorder study. , 2014, Journal of the American Academy of Child and Adolescent Psychiatry.

[23]  D. Wennmann,et al.  KIBRA: In the brain and beyond. , 2014, Cellular signalling.

[24]  M. State,et al.  The Tourette International Collaborative Genetics (TIC Genetics) study, finding the genes causing Tourette syndrome: objectives and methods , 2014, European Child & Adolescent Psychiatry.

[25]  Boris Lenhard,et al.  A Cohesin-Independent Role for NIPBL at Promoters Provides Insights in CdLS , 2014, PLoS genetics.

[26]  David R. O'Brien,et al.  Cell Type-Specific Expression Analysis to Identify Putative Cellular Mechanisms for Neurogenetic Disorders , 2014, The Journal of Neuroscience.

[27]  E. Banks,et al.  De novo mutations in schizophrenia implicate synaptic networks , 2014, Nature.

[28]  Nuno A. Fonseca,et al.  Expression Atlas update—a database of gene and transcript expression from microarray- and sequencing-based functional genomics experiments , 2013, Nucleic Acids Res..

[29]  I. Krantz,et al.  Mutation Spectrum and Genotype–Phenotype Correlation in Cornelia de Lange Syndrome , 2013, Human mutation.

[30]  Wei Niu,et al.  Coexpression Networks Implicate Human Midfetal Deep Cortical Projection Neurons in the Pathogenesis of Autism , 2013, Cell.

[31]  S. Horvath,et al.  Integrative Functional Genomic Analyses Implicate Specific Molecular Pathways and Circuits in Autism , 2013, Cell.

[32]  Mauricio O. Carneiro,et al.  From FastQ Data to High‐Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline , 2013, Current protocols in bioinformatics.

[33]  Michael R. Johnson,et al.  De novo mutations in the classic epileptic encephalopathies , 2013, Nature.

[34]  Kathryn Roeder,et al.  Integrated Model of De Novo and Inherited Genetic Variants Yields Greater Power to Identify Risk Genes , 2013, PLoS genetics.

[35]  F. McMahon,et al.  Common and rare alleles of the serotonin transporter gene, SLC6A4, associated with Tourette's disorder , 2013, Movement disorders : official journal of the Movement Disorder Society.

[36]  N. Freimer,et al.  CNV Analysis in Tourette Syndrome Implicates Large Genomic Rearrangements in COL8A1 and NRXN1 , 2013, PloS one.

[37]  I. Adzhubei,et al.  Predicting Functional Effect of Human Missense Mutations Using PolyPhen‐2 , 2013, Current protocols in human genetics.

[38]  S. E. Stewart,et al.  Genome-wide association study of Tourette Syndrome , 2012, Molecular Psychiatry.

[39]  De novo mutations in epileptic encephalopathies , 2013 .

[40]  B. V. van Bon,et al.  Diagnostic exome sequencing in persons with severe intellectual disability. , 2012, The New England journal of medicine.

[41]  D. Horn,et al.  Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study , 2012, The Lancet.

[42]  S. Levy,et al.  De novo gene mutations highlight patterns of genetic and neural complexity in schizophrenia , 2012, Nature Genetics.

[43]  S. Steinberg,et al.  Rate of de novo mutations and the importance of father’s age to disease risk , 2012, Nature.

[44]  Libing Zhou,et al.  Planar cell polarity genes, Celsr1-3, in neural development , 2012, Neuroscience Bulletin.

[45]  Kenny Q. Ye,et al.  De Novo Gene Disruptions in Children on the Autistic Spectrum , 2012, Neuron.

[46]  Michael F. Walker,et al.  De novo mutations revealed by whole-exome sequencing are strongly associated with autism , 2012, Nature.

[47]  Evan T. Geller,et al.  Patterns and rates of exonic de novo mutations in autism spectrum disorders , 2012, Nature.

[48]  J. Sebat,et al.  CNVs: Harbingers of a Rare Variant Revolution in Psychiatric Genetics , 2012, Cell.

[49]  Joseph T. Glessner,et al.  Rare Copy Number Variants in Tourette Syndrome Disrupt Genes in Histaminergic Pathways and Overlap with Autism , 2012, Biological Psychiatry.

[50]  Bradley P. Coe,et al.  Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations , 2012, Nature.

[51]  Aedín C. Culhane,et al.  Gene Expression Atlas update—a value-added database of microarray and sequencing-based functional genomics experiments , 2011, Nucleic Acids Res..

[52]  J. Kleinman,et al.  Spatiotemporal transcriptome of the human brain , 2011, Nature.

[53]  E. Walker,et al.  Diagnostic and Statistical Manual of Mental Disorders , 2013 .

[54]  Kathryn Roeder,et al.  Multiple Recurrent De Novo CNVs, Including Duplications of the 7q11.23 Williams Syndrome Region, Are Strongly Associated with Autism , 2011, Neuron.

[55]  M. Rieder,et al.  Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations , 2011, Nature Genetics.

[56]  M. DePristo,et al.  A framework for variation discovery and genotyping using next-generation DNA sequencing data , 2011, Nature Genetics.

[57]  Valerie M. Weaver,et al.  The extracellular matrix at a glance , 2010, Journal of Cell Science.

[58]  Y. Zou,et al.  Wnt/Planar Cell Polarity Signaling Controls the Anterior–Posterior Organization of Monoaminergic Axons in the Brainstem , 2010, The Journal of Neuroscience.

[59]  C. Lord,et al.  The Simons Simplex Collection: A Resource for Identification of Autism Genetic Risk Factors , 2010, Neuron.

[60]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[61]  Stephan J Sanders,et al.  Whole exome sequencing identifies recessive WDR62 mutations in severe brain malformations , 2010, Nature.

[62]  H. Hakonarson,et al.  ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data , 2010, Nucleic acids research.

[63]  Judy H. Cho,et al.  L-histidine decarboxylase and Tourette's syndrome. , 2010, The New England journal of medicine.

[64]  H. Chugani,et al.  Tourette syndrome is associated with recurrent exonic copy number variants , 2010, Neurology.

[65]  P. Bork,et al.  A method and server for predicting damaging missense mutations , 2010, Nature Methods.

[66]  Aaron R. Quinlan,et al.  Bioinformatics Applications Note Genome Analysis Bedtools: a Flexible Suite of Utilities for Comparing Genomic Features , 2022 .

[67]  Armin Schneider,et al.  Frontiers in Aging Neuroscience Aging Neuroscience Review Article the Kibra Gene and Protein , 2022 .

[68]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[69]  Angeliki Louvi,et al.  Developmentally regulated and evolutionarily conserved expression of SLITRK1 in brain circuits implicated in Tourette syndrome , 2009, The Journal of comparative neurology.

[70]  A. Ghanizadeh,et al.  Psychiatric disorders and behavioral problems in children and adolescents with Tourette syndrome , 2009, Brain and Development.

[71]  L. Scahill,et al.  Prevalence of diagnosed tourette syndrome in persons aged 6-17 years - United States, 2007. , 2009 .

[72]  A. Cavanna,et al.  The behavioral spectrum of Gilles de la Tourette syndrome. , 2009, The Journal of neuropsychiatry and clinical neurosciences.

[73]  T. Popović,et al.  Prevalence of diagnosed Tourette syndrome in persons aged 6-17 years - United States, 2007. , 2009, MMWR. Morbidity and mortality weekly report.

[74]  S. Hall,et al.  Behavioural phenotype of Cornelia de Lange syndrome: case–control study , 2008, British Journal of Psychiatry.

[75]  J. Peters,et al.  The cohesin complex and its roles in chromosome biology. , 2008, Genes & development.

[76]  M. Robertson The prevalence and epidemiology of Gilles de la Tourette syndrome. Part 1: the epidemiological and prevalence studies. , 2008, Journal of psychosomatic research.

[77]  O. de Backer,et al.  Early Forebrain Wiring: Genetic Dissection Using Conditional Celsr3 Mutant Mice , 2008, Science.

[78]  S. Sommer,et al.  Familial deletion within NLGN4 associated with autism and Tourette syndrome , 2008, European Journal of Human Genetics.

[79]  G. Remuzzi,et al.  Mutations in FN1 cause glomerulopathy with fibronectin deposits , 2008, Proceedings of the National Academy of Sciences.

[80]  T. Banaschewski,et al.  Developmental psychopathology of children and adolescents with Tourette syndrome – impact of ADHD , 2007, European Child & Adolescent Psychiatry.

[81]  S. E. Stewart,et al.  Genome scan for Tourette disorder in affected-sibling-pair and multigenerational families. , 2007, American journal of human genetics.

[82]  G. Busatto,et al.  Obsessive-compulsive disorder in Tourette syndrome. , 2006, Advances in neurology.

[83]  Murat Gunel,et al.  Sequence Variants in SLITRK1 Are Associated with Tourette's Syndrome , 2005, Science.

[84]  L. Burd,et al.  Tourette syndrome and learning disabilities , 2005, BMC pediatrics.

[85]  A. Goffinet,et al.  Protocadherin Celsr3 is crucial in axonal tract development , 2005, Nature Neuroscience.

[86]  Christine Lochner,et al.  Cluster analysis of obsessive-compulsive spectrum disorders in patients with obsessive-compulsive disorder: clinical and genetic correlates. , 2005, Comprehensive psychiatry.

[87]  A. Barnekow,et al.  KIBRA is a novel substrate for protein kinase Czeta. , 2004, Biochemical and biophysical research communications.

[88]  James F. Leckman,et al.  Phenomenology of tics and natural history of tic disorders , 2003, Brain and Development.

[89]  P. Heutink,et al.  CNTNAP2 is disrupted in a family with Gilles de la Tourette syndrome and obsessive compulsive disorder. , 2003, Genomics.

[90]  Thomas Liedtke,et al.  Characterization of KIBRA, a novel WW domain-containing protein. , 2003, Biochemical and biophysical research communications.

[91]  Kenneth M. Yamada,et al.  Fibronectin at a glance , 2002, Journal of Cell Science.

[92]  D. Pauls A complete genome screen in sib pairs affected by Gilles de la Tourette syndrome. The Tourette Syndrome Association International Consortium for Genetics. , 1999, American journal of human genetics.

[93]  D. Lancet,et al.  GeneCards: integrating information about genes, proteins and diseases. , 1997, Trends in genetics : TIG.

[94]  M. D. do Rosário,et al.  Obsessive-compulsive disorder and Tourette syndrome: is there a relationship? , 1997, Sao Paulo medical journal = Revista paulista de medicina.

[95]  R. Hynes,et al.  Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. , 1993, Development.

[96]  K. Kidd,et al.  A twin study of Tourette syndrome. , 1985, Archives of general psychiatry.

[97]  K. Kidd,et al.  Familial pattern and transmission of Gilles de la Tourette syndrome and multiple tics. , 1981, Archives of general psychiatry.

[98]  J. Feighner,et al.  A family study of Gilles de la Tourette syndrome. , 1976, Diseases of the nervous system.