Towards the Perceptual Quality Evaluation of Compressed Light Field Images

Evaluation of perceived quality of light field images, as well as testing new processing tools, or even assessing the effectiveness of objective quality metrics, relies on the availability of test dataset and corresponding quality ratings. This paper presents SMART light field image quality dataset. The dataset consists of source images (raw data without optical corrections), compressed images, and annotated subjective quality scores. Furthermore, analysis of perceptual effects of compression on SMART dataset is presented. Next, the impact of image content on the perceived quality is studied with the help of image quality attributes. Finally, the performances of 2-D image quality metrics when applied to light field images are analyzed.

[1]  Zhou Wang,et al.  Multiscale structural similarity for image quality assessment , 2003, The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003.

[2]  Mark R. Pickering,et al.  Perceptual Dissimilarity: A Measure to Quantify the Degradation of Medical Images , 2012, 2012 International Conference on Digital Image Computing Techniques and Applications (DICTA).

[3]  Hitoshi Urabe,et al.  ISO 20462: a psychophysical image quality measurement standard , 2003, IS&T/SPIE Electronic Imaging.

[4]  Rajiv Soundararajan,et al.  Study of Subjective and Objective Quality Assessment of Video , 2010, IEEE Transactions on Image Processing.

[5]  Kiran B. Raja,et al.  Exploring the Usefulness of Light Field Cameras for Biometrics: An Empirical Study on Face and Iris Recognition , 2016, IEEE Transactions on Information Forensics and Security.

[6]  Karel Fliegel,et al.  Using full-reference image quality metrics for automatic image sharpening , 2014, Photonics Europe.

[7]  Marta Puga,et al.  Design and Laboratory Results of a Plenoptic Objective: From 2D to 3D With a Standard Camera , 2015, Journal of Display Technology.

[8]  R. A. Bradley,et al.  Rank Analysis of Incomplete Block Designs: I. The Method of Paired Comparisons , 1952 .

[9]  F. Bossen,et al.  Common test conditions and software reference configurations , 2010 .

[10]  Christian Schmid,et al.  A Matlab function to estimate choice model parameters from paired-comparison data , 2004, Behavior research methods, instruments, & computers : a journal of the Psychonomic Society, Inc.

[11]  Stefan Winkler,et al.  Analysis of Public Image and Video Databases for Quality Assessment , 2012, IEEE Journal of Selected Topics in Signal Processing.

[12]  G. Lippmann,et al.  Epreuves reversibles. Photographies integrals , 1908 .

[13]  Alan C. Bovik,et al.  Image information and visual quality , 2006, IEEE Trans. Image Process..

[14]  Andrew Lumsdaine,et al.  Depth of Field in Plenoptic Cameras , 2009, Eurographics.

[15]  Luís Ducla Soares,et al.  Light field HEVC-based image coding using locally linear embedding and self-similarity compensated prediction , 2016, 2016 IEEE International Conference on Multimedia & Expo Workshops (ICMEW).

[16]  Sehoon Ha,et al.  Iterative Training of Dynamic Skills Inspired by Human Coaching Techniques , 2014, ACM Trans. Graph..

[17]  Qionghai Dai,et al.  Data compression of light field using wavelet packet , 2004, ICME.

[18]  Christine Guillemot,et al.  Partial light field tomographic reconstruction from a fixed-camera focal stack , 2015, ArXiv.

[19]  G. Barnard,et al.  A New Test for 2 × 2 Tables , 1945, Nature.

[20]  Murray R. Spiegel,et al.  Schaum's outline of theory and problems of statistics. , 1961 .

[21]  Zhou Wang,et al.  Objective Image Quality Assessment: Facing The Real-World Challenges , 2016, IQSP.

[22]  Andrew Lumsdaine,et al.  The focused plenoptic camera , 2009, 2009 IEEE International Conference on Computational Photography (ICCP).

[23]  Sven Wanner,et al.  Datasets and Benchmarks for Densely Sampled 4D Light Fields , 2013, VMV.

[24]  Rafal Mantiuk,et al.  Comparison of Four Subjective Methods for Image Quality Assessment , 2012, Comput. Graph. Forum.

[25]  Richard Szeliski,et al.  Layer extraction from multiple images containing reflections and transparency , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[26]  Weisi Lin,et al.  Perceptual visual quality metrics: A survey , 2011, J. Vis. Commun. Image Represent..

[27]  Weisi Lin,et al.  Pairwise comparison and rank learning for image quality assessment , 2016, Displays.

[28]  Ulf Jennehag,et al.  Scalable Coding of Plenoptic Images by Using a Sparse Set and Disparities , 2016, IEEE Transactions on Image Processing.

[29]  Touradj Ebrahimi,et al.  [ISO/IEC JTC 1/SC 29/WG1 contribution] EPFL Light-Field Image Dataset , 2015 .

[30]  Touradj Ebrahimi,et al.  Objective and subjective evaluation of light field image compression algorithms , 2016, 2016 Picture Coding Symposium (PCS).

[31]  Hideshi Yamada,et al.  Rendering for an interactive 360° light field display , 2007, ACM Trans. Graph..

[32]  Stefan B. Williams,et al.  Linear Volumetric Focus for Light Field Cameras , 2015, TOGS.

[33]  Maya R. Gupta,et al.  How to Analyze Paired Comparison Data , 2011 .

[34]  Sébastien Lê,et al.  FactoMineR: An R Package for Multivariate Analysis , 2008 .

[35]  Federica Battisti,et al.  Impact of video content and transmission impairments on quality of experience , 2016, Multimedia Tools and Applications.

[36]  G. Lippmann,et al.  Sur la théorie de la photographie des couleurs simples et composées par la méthode interférentielle , 2022 .

[37]  Yun Li,et al.  Coding of Focused Plenoptic Contents by Displacement Intra Prediction , 2016, IEEE Transactions on Circuits and Systems for Video Technology.

[38]  Federica Battisti,et al.  SMART: a light field image quality dataset , 2016, MMSys.

[39]  Haibin Ling,et al.  Saliency Detection on Light Field , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  Anat Levin,et al.  User Assisted Separation of Reflections from a Single Image Using a Sparsity Prior , 2004, ECCV.

[41]  Federica Battisti,et al.  Evaluation of the effects of transmission impairments on perceived video quality by exploiting ReTRiEVED dataset , 2017, J. Electronic Imaging.

[42]  Peter Reichl,et al.  QoE - Defining a User-Centric Concept for Service Quality , 2016 .

[43]  Edward H. Adelson,et al.  Single Lens Stereo with a Plenoptic Camera , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[44]  A. Bovik,et al.  A universal image quality index , 2002, IEEE Signal Processing Letters.

[45]  Hua Huang,et al.  No-reference image quality assessment based on spatial and spectral entropies , 2014, Signal Process. Image Commun..

[46]  Wenjun Zhang,et al.  Hybrid No-Reference Quality Metric for Singly and Multiply Distorted Images , 2014, IEEE Transactions on Broadcasting.

[47]  Tom E. Bishop,et al.  Light field superresolution , 2009, 2009 IEEE International Conference on Computational Photography (ICCP).

[48]  Weisi Lin,et al.  Analysis of Distortion Distribution for Pooling in Image Quality Prediction , 2016, IEEE Transactions on Broadcasting.

[49]  Sheila S. Hemami,et al.  VSNR: A Wavelet-Based Visual Signal-to-Noise Ratio for Natural Images , 2007, IEEE Transactions on Image Processing.

[50]  Avideh Zakhor,et al.  Applications of Video-Content Analysis and Retrieval , 2002, IEEE Multim..

[51]  Nikolay N. Ponomarenko,et al.  Image database TID2013: Peculiarities, results and perspectives , 2015, Signal Process. Image Commun..

[52]  Nikolay N. Ponomarenko,et al.  A NEW FULL-REFERENCE QUALITY METRICS BASED ON HVS , 2006 .

[53]  K. Wakimoto,et al.  Efficient and Effective Querying by Image Content , 1994 .

[54]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[55]  Ofer Hadar,et al.  Effects of compression parameters on the perceived quality of video stream over a lossy Internet protocol network , 2006 .

[56]  J. Astola,et al.  ON BETWEEN-COEFFICIENT CONTRAST MASKING OF DCT BASIS FUNCTIONS , 2007 .

[57]  Theophano Mitsa,et al.  Evaluation of contrast sensitivity functions for the formulation of quality measures incorporated in halftoning algorithms , 1993, 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[58]  Sabine Süsstrunk,et al.  Measuring colorfulness in natural images , 2003, IS&T/SPIE Electronic Imaging.

[59]  Andrew Lumsdaine,et al.  Focused plenoptic camera and rendering , 2010, J. Electronic Imaging.

[60]  Marcus Barkowsky,et al.  Subjective assessment methodology for preference of experience in 3DTV , 2013, IVMSP 2013.

[61]  Touradj Ebrahimi,et al.  Free-viewpoint video sequences: A new challenge for objective quality metrics , 2014, 2014 IEEE 16th International Workshop on Multimedia Signal Processing (MMSP).

[62]  Weisi Lin,et al.  Blind Image Quality Assessment for Stereoscopic Images Using Binocular Guided Quality Lookup and Visual Codebook , 2015, IEEE Transactions on Broadcasting.

[63]  Mark R. Pickering,et al.  Perceptual dissimilarity metric: A full reference objective image quality measure to quantify the degradation of perceptual image quality , 2013, IEEE International Symposium on Signal Processing and Information Technology.

[64]  P. Hanrahan,et al.  Light Field Photography with a Hand-held Plenoptic Camera , 2005 .

[65]  Minhua Zhou,et al.  HEVC Deblocking Filter , 2012, IEEE Transactions on Circuits and Systems for Video Technology.

[66]  Qiaosong Wang,et al.  Automatic Layer Separation using Light Field Imaging , 2015, ArXiv.

[67]  Zhou Wang,et al.  SSIM-Based Coarse-Grain Scalable Video Coding , 2015, IEEE Transactions on Broadcasting.

[68]  Luís Ducla Soares,et al.  HEVC-based 3D holoscopic video coding using self-similarity compensated prediction , 2016, Signal Process. Image Commun..

[69]  Detlev Marpe,et al.  Performance comparison of H.265/MPEG-HEVC, VP9, and H.264/MPEG-AVC encoders , 2013, 2013 Picture Coding Symposium (PCS).

[70]  Li Li,et al.  Pseudo-sequence-based light field image compression , 2016, 2016 IEEE International Conference on Multimedia & Expo Workshops (ICMEW).

[71]  Cristian Perra,et al.  Lossless plenoptic image compression using adaptive block differential prediction , 2015, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[72]  Ian T. Jolliffe,et al.  Principal Component Analysis , 2002, International Encyclopedia of Statistical Science.

[73]  Ofer Hadar,et al.  Effects of an Encoding Scheme on Perceived Video Quality Transmitted Over Lossy Internet Protocol Networks , 2008, IEEE Transactions on Broadcasting.

[74]  Du-Sik Park,et al.  Efficient Light-Field Rendering Using Depth Maps for 100-Mpixel Multi-Projection 3D Display , 2015, Journal of Display Technology.

[75]  Martin Vetterli,et al.  LCAV-31: a dataset for light field object recognition , 2013, Electronic Imaging.

[76]  Touradj Ebrahimi,et al.  JPEG Pleno: Toward an Efficient Representation of Visual Reality , 2016, IEEE MultiMedia.

[77]  Peter Schelkens,et al.  Qualinet White Paper on Definitions of Quality of Experience , 2013 .

[78]  John C. Handley,et al.  Comparative Analysis of Bradley-Terry and Thurstone-Mosteller Paired Comparison Models for Image Quality Assessment , 2001, PICS.

[79]  Yongdong Zhang,et al.  Lenselet image compression scheme based on subaperture images streaming , 2015, 2015 IEEE International Conference on Image Processing (ICIP).

[80]  Stefan B. Williams,et al.  Decoding, Calibration and Rectification for Lenselet-Based Plenoptic Cameras , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[81]  J. Tukey,et al.  Variations of Box Plots , 1978 .

[82]  Jari Korhonen,et al.  How to evaluate objective video quality metrics reliably , 2012, 2012 Fourth International Workshop on Quality of Multimedia Experience.