Bayesian modeling of inconsistent plastic response due to material variability

Abstract The advent of fabrication techniques such as additive manufacturing has focused attention on the considerable variability of material response due to defects and other microstructural aspects. This variability motivates the development of an enhanced design methodology that incorporates inherent material variability to provide robust predictions of performance. In this work, we develop plasticity models capable of representing the distribution of mechanical responses observed in experiments using traditional plasticity models of the mean response and recently developed uncertainty quantification (UQ) techniques. To account for material response variability through variations in physical parameters, we adapt a recent Bayesian embedded modeling error calibration technique. We use Bayesian model selection to determine the most plausible of a variety of plasticity models and the optimal embedding of parameter variability. To expedite model selection, we develop an adaptive importance-sampling-based numerical integration scheme to compute the Bayesian model evidence. We demonstrate that the new framework provides predictive realizations that are superior to more traditional ones, and how these UQ techniques can be used in model selection and assessing the quality of calibrated physical parameters.

[1]  Sia Nemat-Nasser,et al.  Averaging theorems in finite deformation plasticity , 1999 .

[2]  J. Beck Bayesian system identification based on probability logic , 2010 .

[3]  William E. Frazier,et al.  Metal Additive Manufacturing: A Review , 2014, Journal of Materials Engineering and Performance.

[4]  Qing Liu,et al.  A note on Gauss—Hermite quadrature , 1994 .

[5]  James L. Beck,et al.  Bayesian Updating and Model Class Selection for Hysteretic Structural Models Using Stochastic Simulation , 2008 .

[6]  Jeremy A. Templeton,et al.  INFERENCE AND UNCERTAINTY PROPAGATION OF ATOMISTICALLY-INFORMED CONTINUUM CONSTITUTIVE LAWS, PART 1: BAYESIAN INFERENCE OF FIXED MODEL FORMS , 2014 .

[7]  J. C. Simo,et al.  A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multipli , 1988 .

[8]  Qiushi Chen,et al.  ALBANY: USING COMPONENT-BASED DESIGN TO DEVELOP A FLEXIBLE, GENERIC MULTIPHYSICS ANALYSIS CODE , 2016 .

[9]  Genichi Taguchi,et al.  Taguchi's Quality Engineering Handbook , 2004 .

[10]  R. Jones,et al.  Uncertainty quantification in MD simulations of concentration driven ionic flow through a silica nanopore. II. Uncertain potential parameters. , 2013, The Journal of chemical physics.

[11]  O. L. Maître,et al.  Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics , 2010 .

[12]  Mircea Grigoriu,et al.  On the efficacy of stochastic collocation, stochastic Galerkin, and stochastic reduced order models for solving stochastic problems , 2015 .

[13]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[14]  Fabien Cailliez,et al.  A critical review of statistical calibration/prediction models handling data inconsistency and model inadequacy , 2016, 1611.04376.

[15]  Maher Salloum,et al.  INFERENCE AND UNCERTAINTY PROPAGATION OF ATOMISTICALLY INFORMED CONTINUUM CONSTITUTIVE LAWS, PART 2: GENERALIZED CONTINUUM MODELS BASED ON GAUSSIAN PROCESSES , 2014 .

[16]  Hermann G. Matthies,et al.  Uncertainty updating in the description of heterogeneous materials , 2010 .

[17]  Dongbin Xiu,et al.  Numerical strategy for model correction using physical constraints , 2016, J. Comput. Phys..

[18]  Dominique Poirel,et al.  Bayesian model selection using automatic relevance determination for nonlinear dynamical systems , 2017 .

[19]  Bo Bergman,et al.  Robust Design Methodology for Reliability; Exploring the Effects of Variation and Uncertainty , 2009 .

[20]  Jeremy E. Oakley,et al.  When Is a Model Good Enough? Deriving the Expected Value of Model Improvement via Specifying Internal Model Discrepancies , 2014, SIAM/ASA J. Uncertain. Quantification.

[21]  Ralph C. Smith,et al.  Uncertainty Quantification: Theory, Implementation, and Applications , 2013 .

[22]  D. Xiu Numerical Methods for Stochastic Computations: A Spectral Method Approach , 2010 .

[23]  W. M. Bolstad Introduction to Bayesian Statistics , 2004 .

[24]  Khachik Sargsyan,et al.  Uncertainty Quantification in MD Simulations. Part II: Bayesian Inference of Force-Field Parameters , 2012, Multiscale Model. Simul..

[25]  Renato N. Elias,et al.  Bayesian assessment of uncertainty in viscosity closure models for turbidity currents computations , 2018, Computer Methods in Applied Mechanics and Engineering.

[26]  Omar M. Knio,et al.  Spectral Methods for Uncertainty Quantification , 2010 .

[27]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[28]  James O. Berger,et al.  A Framework for Validation of Computer Models , 2007, Technometrics.

[29]  Cosmin Safta,et al.  Uncertainty quantification in LES of channel flow , 2017 .

[30]  Mircea Grigoriu,et al.  Predicting laser weld reliability with stochastic reduced‐order models , 2015 .

[31]  John Skilling,et al.  Data analysis : a Bayesian tutorial , 1996 .

[32]  N. Wiener The Homogeneous Chaos , 1938 .

[33]  R. Hill Elastic properties of reinforced solids: some theoretical principles , 1963 .

[34]  Todd A. Oliver,et al.  Representing model inadequacy: A stochastic operator approach , 2016, SIAM/ASA J. Uncertain. Quantification.

[35]  David L. McDowell,et al.  Representation and computational structure-property relations of random media , 2011 .

[36]  Habib N. Najm,et al.  Probabilistic inference of reaction rate parameters from summary statistics , 2018, Combustion Theory and Modelling.

[37]  Christian Soize A nonparametric model of random uncertainties for reduced matrix models in structural dynamics , 2000 .

[38]  Tae Hee Lee,et al.  Robust Design: An Overview , 2006 .

[39]  Laura Painton Swiler,et al.  Extreme‐Value Statistics Reveal Rare Failure‐Critical Defects in Additive Manufacturing   , 2017 .

[40]  Brad Lee Boyce,et al.  Crystal plasticity simulations of microstructure-induced uncertainty in strain concentration near voids in brass , 2015 .

[41]  S. E. Ahmed,et al.  Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference , 2008, Technometrics.

[42]  A. O'Hagan,et al.  Bayesian calibration of computer models , 2001 .

[43]  Panayiotis Papadopoulos,et al.  A homogenization method for thermomechanical continua using extensive physical quantities , 2012, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[44]  J. Berger,et al.  The Intrinsic Bayes Factor for Model Selection and Prediction , 1996 .

[45]  Elizabeth A. Holm,et al.  The effect of microstructural representation on simulations of microplastic ratcheting , 2010 .

[46]  Khachik Sargsyan,et al.  Probabilistic parameter estimation in a 2-step chemical kinetics model for n-dodecane jet autoignition , 2018 .

[47]  J. Tinsley Oden,et al.  Selection, calibration, and validation of coarse-grained models of atomistic systems , 2015 .

[48]  Gabriel Terejanu From Model Calibration and Validation to Reliable Extrapolations , 2016 .

[49]  Bernd A. Berg,et al.  Markov Chain Monte Carlo Simulations , 2007, Wiley Encyclopedia of Computer Science and Engineering.

[50]  J. Naylor,et al.  Applications of a Method for the Efficient Computation of Posterior Distributions , 1982 .

[51]  G. Kitagawa,et al.  Information Criteria and Statistical Modeling , 2007 .

[52]  Habib N. Najm,et al.  Stochastic spectral methods for efficient Bayesian solution of inverse problems , 2005, J. Comput. Phys..

[53]  Guilhem Lacaze,et al.  Uncertainty quantification in LES of a turbulent bluff-body stabilized flame , 2015 .

[54]  Ivo Babuška,et al.  Predictive Computational Science: Computer Predictions in the Presence of Uncertainty , 2017 .

[55]  B. Øksendal Stochastic Differential Equations , 1985 .

[56]  Dave Higdon,et al.  Combining Field Data and Computer Simulations for Calibration and Prediction , 2005, SIAM J. Sci. Comput..

[57]  H. Najm,et al.  On the Statistical Calibration of Physical Models: STATISTICAL CALIBRATION OF PHYSICAL MODELS , 2015 .

[58]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..