Exponential stability for the wave equations with local Kelvin–Voigt damping

Abstract.We consider the wave equations with local viscoelastic damping distributed around the boundary of a bounded open set $$\Omega \subset \mathbb{R}^{N} .$$ We show that the energy of the wave equations goes uniformly and exponentially to zero for all initial data of finite energy.

[1]  Amnon Pazy,et al.  Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.

[2]  J. Prüss On the Spectrum of C 0 -Semigroups , 1984 .

[3]  F. Lin,et al.  Unique continuation for elliptic operators: A geometric‐variational approach , 1987 .

[4]  Wolfgang Arendt,et al.  Tauberian theorems and stability of one-parameter semigroups , 1988 .

[5]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[6]  C. Bardos,et al.  Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary , 1992 .

[7]  F. Huang Strong Asymptotic Stability of Linear Dynamical Systems in Banach Spaces , 1993 .

[8]  Kangsheng Liu Locally Distributed Control and Damping for the Conservative Systems , 1997 .

[9]  Kangsheng Liu,et al.  Exponential Decay of Energy of the Euler--Bernoulli Beam with Locally Distributed Kelvin--Voigt Damping , 1998 .

[10]  Kangsheng Liu,et al.  Spectrum and Stability for Elastic Systems with Global or Local Kelvin-Voigt Damping , 1998, SIAM J. Appl. Math..

[11]  Herbert Koch,et al.  Carleman estimates and unique continuation for second-order elliptic equations with nonsmooth coefficients , 2001 .

[12]  Zhuangyi Liu,et al.  Exponential decay of energy of vibrating strings with local viscoelasticity , 2002 .

[13]  Enrique Zuazua,et al.  Control, observation and polynomial decay for a coupled heat-wave system , 2003 .