Quantifying the Information in Auditory-Nerve Responses for Level Discrimination

[1]  Ying-Cheng Lai,et al.  A model of selective processing of auditory-nerve inputs by stellate cells of the antero-ventral cochlear nucleus , 1994, Journal of Computational Neuroscience.

[2]  William M. Siebert,et al.  Some implications of the stochastic behavior of primary auditory neurons , 1965, Kybernetik.

[3]  Laurel H Carney,et al.  Quantifying the implications of nonlinear cochlear tuning for auditory-filter estimates. , 2002, The Journal of the Acoustical Society of America.

[4]  Laurel H. Carney,et al.  Auditory Phase Opponency: A Temporal Model for Masked Detection at Low Frequencies , 2002 .

[5]  D A Nelson,et al.  A new procedure for measuring peripheral compression in normal-hearing and hearing-impaired listeners. , 2001, The Journal of the Acoustical Society of America.

[6]  M G Heinz,et al.  Rate and timing cues associated with the cochlear amplifier: level discrimination based on monaural cross-frequency coincidence detection. , 2001, The Journal of the Acoustical Society of America.

[7]  Laurel H. Carney,et al.  Evaluating Auditory Performance Limits: I. One-Parameter Discrimination Using a Computational Model for the Auditory Nerve , 2001, Neural Computation.

[8]  Michael G. Heinz,et al.  Quantifying the effects of the cochlear amplifier on temporal and average-rate information in the auditory nerve , 2000 .

[9]  L.G. Huettel,et al.  Using computational auditory models to predict simultaneous masking data: model comparison , 1999, IEEE Transactions on Biomedical Engineering.

[10]  P Dallos,et al.  The level dependence of response phase: observations from cochlear hair cells. , 1998, The Journal of the Acoustical Society of America.

[11]  Johan H. M. Frijns,et al.  Transmitter release in inner hair cell synapses: a model analysis of spontaneous and driven rate properties of cochlear nerve fibres , 1997, Hearing Research.

[12]  A. Oxenham,et al.  A behavioral measure of basilar-membrane nonlinearity in listeners with normal and impaired hearing. , 1997, The Journal of the Acoustical Society of America.

[13]  C. Köppl Phase Locking to High Frequencies in the Auditory Nerve and Cochlear Nucleus Magnocellularis of the Barn Owl, Tyto alba , 1997, The Journal of Neuroscience.

[14]  L. Robles,et al.  Basilar-membrane responses to tones at the base of the chinchilla cochlea. , 1997, The Journal of the Acoustical Society of America.

[15]  William Bialek,et al.  Spikes: Exploring the Neural Code , 1996 .

[16]  B. Delgutte Physiological Models for Basic Auditory Percepts , 1996 .

[17]  G. K. Yates,et al.  Nonlinear input-output functions derived from the responses of guinea-pig cochlear nerve fibres: Variations with characteristic frequency , 1994, Hearing Research.

[18]  Laurel H. Carney,et al.  Spatiotemporal encoding of sound level: Models for normal encoding and recruitment of loudness , 1994, Hearing Research.

[19]  P X Joris,et al.  Enhancement of neural synchronization in the anteroventral cochlear nucleus. II. Responses in the tuning curve tail. , 1994, Journal of neurophysiology.

[20]  L H Carney,et al.  Enhancement of neural synchronization in the anteroventral cochlear nucleus. I. Responses to tones at the characteristic frequency. , 1994, Journal of neurophysiology.

[21]  A R Palmer,et al.  Intensity coding in low-frequency auditory-nerve fibers of the guinea pig. , 1991, The Journal of the Acoustical Society of America.

[22]  S Buus,et al.  Psychometric functions for level discrimination. , 1987, The Journal of the Acoustical Society of America.

[23]  L. Carney Sensitivities of cells in anteroventral cochlear nucleus of cat to spatiotemporal discharge patterns across primary afferents. , 1990, Journal of neurophysiology.

[24]  Ian M. Winter,et al.  Diversity of characteristic frequency rate-intensity functions in guinea pig auditory nerve fibres , 1990, Hearing Research.

[25]  Charles S. Watson,et al.  Auditory Processing of Complex Sounds , 1990 .

[26]  Raimond L Winslow,et al.  Single-tone intensity discrimination based on auditory-nerve rate responses in backgrounds of quiet, noise, and with stimulation of the crossed olivocochlear bundle , 1988, Hearing Research.

[27]  Neal F. Viemeister,et al.  Intensity coding and the dynamic range problem , 1988, Hearing Research.

[28]  T. F. Weiss,et al.  A comparison of synchronization filters in different auditory receptor organs , 1988, Hearing Research.

[29]  M. Florentine,et al.  Level discrimination as a function of level for tones from 0.25 to 16 kHz. , 1987, The Journal of the Acoustical Society of America.

[30]  Bertrand Delgutte,et al.  Peripheral Auditory Processing of Speech Information: Implications from a Physiological Study of Intensity Discrimination , 1987 .

[31]  M. E. H. Schouten,et al.  The psychophysics of speech perception , 1987 .

[32]  E D Young,et al.  Rate responses of auditory nerve fibers to tones in noise near masked threshold. , 1986, The Journal of the Acoustical Society of America.

[33]  Raimond L. Winslow,et al.  Some Aspects of Rate Coding in the Auditory Nerve , 1986 .

[34]  Malvin Carl Teich,et al.  A neural-counting model based on physiological characteristics of the peripheral auditory system. V. Application to loudness estimation and intensity discrimination , 1984, IEEE Transactions on Systems, Man, and Cybernetics.

[35]  N. Viemeister,et al.  Auditory intensity discrimination at high frequencies in the presence of noise. , 1983, Science.

[36]  A neural‐counting model incorporating refractoriness and spread of excitation: Role of the peripheral auditory system in intensity discrimination and loudness estimation , 1982 .

[37]  So,et al.  An excitation‐pattern model for intensity discrimination , 1981 .

[38]  D. H. Johnson,et al.  The relationship between spike rate and synchrony in responses of auditory-nerve fibers to single tones. , 1980, The Journal of the Acoustical Society of America.

[39]  N. Kiang Processing of speech by the auditory nervous system. , 1980, The Journal of the Acoustical Society of America.

[40]  Dynamic Response of Single Auditory-Nerve Fibers: Some Effects of Intensity and Time , 1980 .

[41]  F. A. Bilsen,et al.  Psychophysical, Physiological and Behavioural Studies in Hearing , 1980 .

[42]  E. Evans ‘Phase-Locking’ of Cochlear Fibres and the Problem of Dynamic Range , 1980 .

[43]  J. L. Goldstein On the Signal Processing Potential of High Threshold Auditory Nerve Fibers , 1980 .

[44]  M C Teich,et al.  A neural-counting model incorporating refractoriness and spread of excitation. I. Application to intensity discrimination. , 1979, The Journal of the Acoustical Society of America.

[45]  C D Geisler,et al.  Auditory nerve fiber response to wide-band noise and tone combinations. , 1978, Journal of neurophysiology.

[46]  M. Liberman,et al.  Auditory-nerve response from cats raised in a low-noise chamber. , 1978, The Journal of the Acoustical Society of America.

[47]  D. M. Green,et al.  Intensity discrimination as a function of frequency and sensation level. , 1977, The Journal of the Acoustical Society of America.

[48]  D H Johnson,et al.  Analysis of discharges recorded simultaneously from pairs of auditory nerve fibers. , 1976, Biophysical journal.

[49]  W. M. Rabinowitz,et al.  Intensity perception. VI. Summary of recent data on deviations from Weber's law for 1000-Hz tone pulses. , 1976, The Journal of the Acoustical Society of America.

[50]  Intensity discrimination for noise bursts in the presence of a continuous, bandstop background: effects of level, width of the bandstop, and duration. , 1975, The Journal of the Acoustical Society of America.

[51]  M. Sachs,et al.  Rate versus level functions for auditory-nerve fibers in cats: tone-burst stimuli. , 1974, The Journal of the Acoustical Society of America.

[52]  R. Luce,et al.  Neural coding and psychophysical discrimination data. , 1974, The Journal of the Acoustical Society of America.

[53]  B C Moore,et al.  Pure-tone intensity discrimination: some experiments relating to the "near-miss" to Weber's law. , 1974, The Journal of the Acoustical Society of America.

[54]  N. Kiang,et al.  Tails of tuning curves of auditory-nerve fibers. , 1973, The Journal of the Acoustical Society of America.

[55]  Julius L. Goldstein,et al.  Is the Power Law Simply Related to the Driven Spike Response Rate from the Whole Auditory Nerve , 1974 .

[56]  J. C. Stevens,et al.  Sensation and Measurement , 1974, Springer Netherlands.

[57]  H S Colburn,et al.  Theory of binaural interaction based on auditory-nerve data. I. General strategy and preliminary results on interaural discrimination. , 1973, The Journal of the Acoustical Society of America.

[58]  E F Evans,et al.  The frequency response and other properties of single fibres in the guinea‐pig cochlear nerve , 1972, The Journal of physiology.

[59]  N. I. Durlach,et al.  Intensity Perception. II. Resolution in One‐Interval Paradigms , 1972 .

[60]  David J. Anderson,et al.  Temporal Position of Discharges in Single Auditory Nerve Fibers within the Cycle of a Sine‐Wave Stimulus: Frequency and Intensity Effects , 1971 .

[61]  J. E. Rose,et al.  Temporal position of discharges in single auditory nerve fibers within the cycle of a sine-wave stimulus: frequency and intensity effects. , 1971, The Journal of the Acoustical Society of America.

[62]  W. M. Siebert,et al.  Frequency discrimination in the auditory system: Place or periodicity mechanisms? , 1970 .

[63]  N I Durlach,et al.  Intensity perception. I. Preliminary theory of intensity resolution. , 1969, The Journal of the Acoustical Society of America.

[64]  W. J. McGill,et al.  Pure-tone intensity discrimination and energy detection. , 1968, The Journal of the Acoustical Society of America.

[65]  W. J. McGill,et al.  A study of the near-miss involving Weber’s law and pure-tone intensity discrimination , 1968 .

[66]  P. A. Kolers Recognizing patterns , 1968 .

[67]  D. Maiwald,et al.  Ein Funktionsschema des Gehors zur Beschreibung der Erkennbarkeit kleiner Frequenz und Amplitudenanderungen , 1967 .