An Experimental Analysis of the Dependence Among Codeword Bit Errors in Ecoc Learning Machines

One of the main factors a3ecting the e3ectiveness of error correcting output coding (ECOC) methods for classi4cation is the dependence among the errors of the computed codeword bits. We present an extensive experimental work for evaluating the dependence among output errors of the decomposition unit in ECOC learning machines. In particular, we apply measures based on mutual information to compare the dependence of ECOC multi-layer perceptron (ECOC MLP), made up by a single multi-input multi-output MLP, and ECOC ensembles made up by a set of independent and parallel dichotomizers (ECOC PND). Moreover, the experimentation analyzes the relationship between the architecture, the dependence among output errors and the performances of ECOC learning machines. The results show that the dependence among computed codeword bits is signi4cantly smaller for ECOC PND, pointing out that ensembles of independent parallel dichotomizers are better suited for implementing ECOC classi4cation methods. The experimental results suggest new architectures of ECOC learning machines to improve the independence among output errors and the diversity between base learners. c

[1]  Geoffrey E. Hinton,et al.  Self-organizing neural network that discovers surfaces in random-dot stereograms , 1992, Nature.

[2]  Giorgio Valentini,et al.  NEURObjects: an object-oriented library for neural network development , 2002, Neurocomputing.

[3]  Eddy Mayoraz,et al.  Improved Pairwise Coupling Classification with Correcting Classifiers , 1998, ECML.

[4]  Ethem Alpaydin,et al.  Learning error-correcting output codes from data , 1999 .

[5]  Roberto Battiti,et al.  Using mutual information for selecting features in supervised neural net learning , 1994, IEEE Trans. Neural Networks.

[6]  Giorgio Valentini,et al.  Gene expression data analysis of human lymphoma using support vector machines and output coding ensembles , 2002, Artif. Intell. Medicine.

[7]  Giorgio Valentini,et al.  Parallel non-linear dichotomizers , 2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium.

[8]  Koby Crammer,et al.  On the Learnability and Design of Output Codes for Multiclass Problems , 2002, Machine Learning.

[9]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[10]  R. Tibshirani,et al.  Classi cation by Pairwise Coupling , 1998 .

[11]  Giorgio Valentini,et al.  Effectiveness of Error Correcting Output Codes in Multiclass Learning Problems , 2000, Multiple Classifier Systems.

[12]  William M. Campbell,et al.  Mutual Information in Learning Feature Transformations , 2000, ICML.

[13]  F. Masulli,et al.  Decompositive classification models for electronic noses , 2001 .

[14]  D W Aha,et al.  CLOUD CLASSIFICATION USING ERRORCORRECTING OUTPUT CODES , 1997 .

[15]  Simon Haykin,et al.  A modular neural network for enhancement of cross-polar radar targets , 1996, Neural Networks.

[16]  Thomas G. Dietterich,et al.  Solving Multiclass Learning Problems via Error-Correcting Output Codes , 1994, J. Artif. Intell. Res..

[17]  Jacobus H. van Lint,et al.  Coding Theory , 1971 .

[18]  Alberto Maria Segre,et al.  Programs for Machine Learning , 1994 .

[19]  Venkatesan Guruswami,et al.  Multiclass learning, boosting, and error-correcting codes , 1999, COLT '99.

[20]  Ralph Linsker,et al.  An Application of the Principle of Maximum Information Preservation to Linear Systems , 1988, NIPS.

[21]  Adam L. Berger,et al.  ERROR-CORRECTING OUTPUT CODING FOR TEXT CLASSIFICATION , 1999 .

[22]  Rayid Ghani,et al.  Using Error-Correcting Codes for Text Classification , 2000, ICML.

[23]  W. W. Peterson,et al.  Error-Correcting Codes. , 1962 .

[24]  Dwijendra K. Ray-Chaudhuri,et al.  Binary mixture flow with free energy lattice Boltzmann methods , 2022, arXiv.org.

[25]  Yoav Freund,et al.  Boosting the margin: A new explanation for the effectiveness of voting methods , 1997, ICML.

[26]  Terrence J. Sejnowski,et al.  Parallel Networks that Learn to Pronounce English Text , 1987, Complex Syst..

[27]  Thomas G. Dietterich,et al.  Error-Correcting Output Codes: A General Method for Improving Multiclass Inductive Learning Programs , 1991, AAAI.

[28]  Patrick Brézillon,et al.  Lecture Notes in Artificial Intelligence , 1999 .

[29]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[30]  Robert E. Schapire,et al.  Using output codes to boost multiclass learning problems , 1997, ICML.

[31]  Ethem Alpaydin,et al.  Combining Linear Dichomotizers to Construct Nonlinear Polychotomizers , 1998 .

[32]  E. M. Wright,et al.  Adaptive Control Processes: A Guided Tour , 1961, The Mathematical Gazette.

[33]  Thomas G. Dietterich,et al.  Achieving High-Accuracy Text-to-Speech with Machine Learning , 1997 .

[34]  Vladimir Cherkassky,et al.  Learning from Data: Concepts, Theory, and Methods , 1998 .

[35]  Kishan G. Mehrotra,et al.  Efficient classification for multiclass problems using modular neural networks , 1995, IEEE Trans. Neural Networks.

[36]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[37]  Thomas G. Dietterich,et al.  Error-Correcting Output Coding Corrects Bias and Variance , 1995, ICML.

[38]  Giorgio Valentini,et al.  Comparing decomposition methods for classification , 2000, KES'2000. Fourth International Conference on Knowledge-Based Intelligent Engineering Systems and Allied Technologies. Proceedings (Cat. No.00TH8516).

[39]  Christopher J. Merz,et al.  UCI Repository of Machine Learning Databases , 1996 .

[40]  Gareth M. James,et al.  Majority vote classifiers: theory and applications , 1998 .

[41]  Mübeccel Demirekler,et al.  On output independence and complementariness in rank-based multiple classifier decision systems , 2001, Pattern Recognit..

[42]  F. Lemmermeyer Error-correcting Codes , 2005 .

[43]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[44]  金田 重郎,et al.  C4.5: Programs for Machine Learning (書評) , 1995 .

[45]  Robert Tibshirani,et al.  Classification by Pairwise Coupling , 1997, NIPS.

[46]  Thomas G. Dietterich Multiple Classifier Systems , 2000, Lecture Notes in Computer Science.

[47]  Eddy Mayoraz,et al.  On the Decomposition of Polychotomies into Dichotomies , 1997, ICML.

[48]  Pierre Comon Independent component analysis - a new concept? signal processing , 1994 .

[49]  Yoram Singer,et al.  Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers , 2000, J. Mach. Learn. Res..