Time course of cortical hemorrhages after closed traumatic brain injury: statistical analysis of posttraumatic histomorphological alterations.

We examined 305 autopsied brains for histomorphological alterations to determine the time course of reactions in cortical hemorrhages following traumatic closed brain injury. Eighteen morphological criteria were considered: red blood cells (RBCs), polymorphonuclear leukocytes (PMNs), macrophages (Ms), RBC-containing Ms, hemosiderin, hematoidin, lipid-containing Ms, fibroblasts, endothelial cells, collagenous fibres, gemistocytic astrocytes, fibrillary gliosis, hemosiderin-containing astrocytes, neuronal damage, neuronophagy, axonal swelling (beta-amyloid precursor protein: beta-APP), axonal bulbs (van Gieson stain), and mineralisation of neurons. The interval between the time of brain injury and death ranged from 1 min to 58 years. Following routine staining and immunohistochemical staining of microglia (CD68), astrocytes (GFAP) and injured axons (beta-APP), paraffin sections were examined by light microscopy for the presence of the selected histomorphological features. For each cytomorphological phenomenon, the time at which it could be demonstrated for the first time and for the last time (observation period) was determined. The relative frequency of each criterion was established for each observation period. The limits of confidence for the respective relative frequencies were estimated with a reliability of 95% according to Clopper and Pearson. An apparent correlation was found between the frequency of a given histomorphological phenomenon and the length of the posttraumatic interval. To check for accuracy of prediction, half of the cases (group 1; n = 153) were used to develop a multistage evaluation model; half (group 2; n = 152) were used to evaluate the validity of the data of group 1. Applying this model, 117 of the 152 control group cases (76.97%) could be correctly classified and further 26 cases (17.11%) being assigned to an interval close to the correct interval. Thus, this model allows classification of the correct posttraumatic interval or an interval close to the correct posttraumatic interval in about 95% of cases. We developed a software program that allows the estimation of survival time of TBI based on the relative frequency of the 18 morphological features. Applying this software will help to estimate the posttraumatic interval of cortical hemorrhages following TBI of unknown survival time.

[1]  F. Unterharnscheidt,et al.  MECHANIK UND PATHOMORPHOLOGIE DER GEDECKTEN SCHÄDEN DES GAHIRNS NACH EINMALIGER, WIEDERHOLTER UND GEHÄUFTER STUMPFER GEWALTEINWIRKUNG AUF DEN SCHÄDEL , 1962 .

[2]  Privatdozent Dr. Manfred Oehmichen Mononuclear Phagocytes in the Central Nervous System , 1978, Schriftenreihe Neurologie / Neurology Series.

[3]  M. Nieto‐Sampedro Astrocyte mitogen inhibitor related to epidermal growth factor receptor. , 1988, Science.

[4]  T. Ishikawa,et al.  Time Course of Brain Neuronal Degeneration and Heat Shock Protein (72) Expression Following Neck Tourniquet-Induced Cerebral Ischemia in the Rat , 2000, Cellular and Molecular Neurobiology.

[5]  Kennady Jc Investigations of the early fate and removal of subarachnoid blood. , 1967 .

[6]  G. Strassmann Formation of hemosiderin and hematoidin after traumatic and spontaneous cerebral hemorrhages. , 1949, Archives of pathology.

[7]  R. Schröder Chronomorphologie der zerebralen Durchblutungsstörungen , 1983 .

[8]  H. Jacob Zentralnervöse Gewebsschäden und Funktionsstörungen nach Erstickungsvorgängen (Obstruktionshypoxydosen) , 2004, Deutsche Zeitschrift für die gesamte gerichtliche Medizin.

[9]  K. Opeskin,et al.  Timing of early changes in brain trauma. , 1998, The American journal of forensic medicine and pathology.

[10]  W. Eisenmenger,et al.  Zur histologischen und histochemischen Altersbestimmung gedeckter Hirnrindenverletzungen , 1978 .

[11]  Erin D Bigler,et al.  Neuropsychological results and neuropathological findings at autopsy in a case of mild traumatic brain injury , 2004, Journal of the International Neuropsychological Society.

[12]  M. Mossakowski,et al.  Some aspects of the histochemistry of the reactive glia. , 1972, Neuropatologia polska.

[13]  I. Klatzo,et al.  HISTOCHEMICAL OBSERVATIONS ON OXIDATIVE ENZYME ACTIVITY OF GLIAL CELLS IN A LOCAL BRAIN INJURY , 1962, Journal of neuropathology and experimental neurology.

[14]  P. Kochanek,et al.  Early polymorphonuclear leukocyte accumulation correlates with the development of posttraumatic cerebral edema in rats. , 1990, Journal of neurotrauma.

[15]  S. Scheff,et al.  Alterations in temporal/spatial distribution of GFAP- and vimentin-positive astrocytes after spinal cord contusion with the New York University spinal cord injury device. , 1998, Journal of neurotrauma.

[16]  E. Kreyszig Statistische Methoden und ihre Anwendungen , 1998 .

[17]  P. Kochanek,et al.  Assessment of posttraumatic polymorphonuclear leukocyte accumulation in rat brain using tissue myeloperoxidase assay and vinblastine treatment. , 1992, Journal of neurotrauma.

[18]  G. Müller Zur Frage der Altersbestimmung histologischer Veränderungen im menschlichen Gehirn unter Berücksichtigung der örtlichen Verteilung , 1930 .

[19]  W. Spielmeyer Histopathologie des Nervensystems , 1922 .

[20]  P. Kochanek,et al.  Effects of neutropenia on edema, histology, and cerebral blood flow after traumatic brain injury in rats. , 1994, Journal of neurotrauma.

[21]  A J McLean,et al.  Topography of axonal injury as defined by amyloid precursor protein and the sector scoring method in mild and severe closed head injury. , 1995, Journal of neurotrauma.

[22]  M. Oehmichen,et al.  Timing of cortical contusion , 2005, Zeitschrift für Rechtsmedizin.

[23]  A. Torvik,et al.  Neuronal uptake of plasma proteins in brain contusions , 1992, Acta Neuropathologica.

[24]  D. Smith,et al.  Inflammatory leukocytic recruitment and diffuse neuronal degeneration are separate pathological processes resulting from traumatic brain injury , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[25]  M. Oehmichen,et al.  Brain macrophages in human cortical contusions as indicator of survival period. , 1986, Forensic science international.

[26]  E. R. Cooper,et al.  The fate of certain foreign colloids and crystalloids after subarachnoid injection. , 1955, Acta anatomica.

[27]  D. Anderson,et al.  Neuronophagia by Leukocytes in Experimental Spinal Cord Injury , 1983, Journal of neuropathology and experimental neurology.

[28]  J. Povlishock,et al.  Diffuse axonal injury , 1995 .

[29]  P. Kochanek,et al.  Neutrophil accumulation after traumatic brain injury in rats: comparison of weight drop and controlled cortical impact models. , 1994, Journal of neurotrauma.

[30]  E. Hogan,et al.  The effects of spinal cord trauma on myelin. , 1980, Journal of neuropathology and experimental neurology.

[31]  S. Engel,et al.  Expression of microglial markers in the human CNS after closed head injury. , 1996, Acta neurochirurgica. Supplement.

[32]  J. Adams,et al.  THE CONTUSION INDEX: A QUANTITATIVE APPROACH TO CEREBRAL CONTUSIONS IN HEAD INJURY , 1980, Neuropathology and applied neurobiology.

[33]  E. S. Pearson,et al.  THE USE OF CONFIDENCE OR FIDUCIAL LIMITS ILLUSTRATED IN THE CASE OF THE BINOMIAL , 1934 .

[34]  F. Sherriff,et al.  Early detection of axonal injury after human head trauma using immunocytochemistry for β-amyloid precursor protein , 2004, Acta Neuropathologica.

[35]  A J McLean,et al.  Brain injury patterns in fatally injured pedestrians. , 1994, The Journal of trauma.

[36]  L. Guth,et al.  Astroglial reaction in the gray matter of lumbar segments after midthoracic transection of the adult rat spinal cord , 1981, Experimental Neurology.

[37]  J. Povlishock,et al.  Oxygen radicals in brain injury. , 1986, Central nervous system trauma : journal of the American Paralysis Association.

[38]  J. Adams,et al.  Introduction to Neuropathology , 1988 .

[39]  T. Mcintosh,et al.  Regional Heterogeneity in the Response of Astrocytes following Traumatic Brain Injury in the Adult Rat , 1996, Journal of neuropathology and experimental neurology.

[40]  L. Leder,et al.  Über die selektive fermentcytochemische Darstellung von neutrophilen myeloischen Zellen und Gewebsmastzellen im Paraffinschnitt , 1964, Klinische Wochenschrift.