Electrochemical Properties of Single-Wall Carbon Nanotube Electrodes

The electrochemical properties of single-wall carbon nanotube (CNT) electrodes in the form of sheets or papers have been examined. Thermal annealing has produced significant changes in a range of properties of the material including increased hydrophobicity and elimination of electroactive surface functional groups and other impurities. As a result of these changes. the treated electrodes exhibit lower double-layer capacitance, absence of faradaic responses and associated pseudocapacitance, and a better frequency response. The basic electrochemical behavior of the CNT paper electrodes is not markedly affected by relatively large differences in electrolyte ion size, consistent with an average pore size of 9 nm. Increases in both CNT sheet thickness and surface area induce a slower electrode response in agreement with the porous nature of the electrode matrix.

[1]  Ernest Yeager,et al.  Differential Capacitance Study on the Basal Plane of Stress-Annealed Pyrolytic Graphite , 1972 .

[2]  K. Beccu,et al.  Abschätzung der porenstruktur poröser elektroden aus impedanzmessungen , 1976 .

[3]  A. Soffer,et al.  The electrical double layer of carbon and graphite electrodes: Part II. Fast and slow charging processes , 1985 .

[4]  A. Soffer,et al.  The electrical double layer of carbon and graphite electrodes: Part III. Charge and dimensional changes at wide potential range , 1986 .

[5]  H. Gerischer,et al.  Density of the electronic states of graphite: derivation from differential capacitance measurements , 1987 .

[6]  A. Soffer,et al.  Electro adsorption, the electrical double layer and their relation to dimensional changes of carbon electrodes , 1987 .

[7]  Hardcover,et al.  Carbon: Electrochemical and Physicochemical Properties , 1988 .

[8]  A. Soffer,et al.  The electrical double layer of carbon and graphite electrodes: Part V. Specific interactions with simple ions , 1989 .

[9]  M. Hahn,et al.  The double layer of activated carbon electrodes part 2. Charge carriers in the solid material , 1994 .

[10]  M. Hahn,et al.  Electronic properties and double layer of activated carbon , 1997 .

[11]  R. Hoch,et al.  High power electrochemical capacitors based on carbon nanotube electrodes , 1997 .

[12]  A. Larbot,et al.  Hafnia ceramic nanofiltration membranes. Part I: Preparation and characterization , 1998 .

[13]  Mohsen Shahinpoor,et al.  Electroactive Polymer Actuators as Artificial Muscles for Space Applications , 1998 .

[14]  S. Subramoney Novel Nanocarbons—Structure, Properties, and Potential Applications , 1998 .

[15]  Hang Shi,et al.  Studies of activated carbons used in double-layer capacitors , 1998 .

[16]  A. Rinzler,et al.  Carbon nanotube actuators , 1999, Science.

[17]  Jiangtao Hu,et al.  Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes , 1999 .

[18]  X. B. Zhang,et al.  Structure and Lithium Insertion Properties of Carbon Nanotubes , 1999 .

[19]  S. Bonnamy,et al.  Electrochemical storage of lithium in multiwalled carbon nanotubes , 1999 .

[20]  P. Ajayan Nanotubes from Carbon. , 1999, Chemical reviews.

[21]  A. Hassanien,et al.  Doping mechanism in single-wall carbon nanotubes studied by optical absorption , 2000 .

[22]  L. Dao,et al.  The effect of pore size distribution on the frequency dispersion of porous electrodes , 2000 .

[23]  Rüdiger Kötz,et al.  Thick Active Layers of Electrochemically Modified Glassy Carbon. Electrochemical Impedance Studies , 2000 .

[24]  Ray H. Baughman,et al.  Electrochemical Characterization of Single‐Walled Carbon Nanotube Electrodes , 2000 .

[25]  Ray H. Baughman,et al.  Electrochemical studies of single-wall carbon nanotubes in aqueous solutions , 2000 .

[26]  G. Wallace,et al.  Electrochemical quartz crystal microbalance studies of single-wall carbon nanotubes in aqueous and non-aqueous solutions , 2000 .

[27]  Andrew G. Rinzler,et al.  Solid‐State Electrochemistry of the Li Single Wall Carbon Nanotube System , 2000 .

[28]  Young Hee Lee,et al.  Electrochemical Properties of High-Power Supercapacitors Using Single-Walled Carbon Nanotube Electrodes , 2001 .