Precomputed Multiple Scattering for Rapid Light Simulation in Participating Media

Rendering translucent materials is costly: light transport algorithms need to simulate a large number of scattering events inside the material before reaching convergence. The cost is especially high for materials with a large albedo or a small mean-free-path, where higher-order scattering effects dominate. We present a new method for fast computation of global illumination with participating media. Our method uses precomputed multiple scattering effects, stored in two compact tables. These precomputed multiple scattering tables are easy to integrate with any illumination simulation algorithm. We give examples for virtual ray lights (VRL), photon mapping with beams and paths (UPBP), Metropolis Light Transport with Manifold Exploration (MEMLT). The original algorithms are in charge of low-order scattering, combined with multiple scattering computed using our table. Our results show significant improvements in convergence speed and memory costs, with negligible impact on accuracy.

[1]  Eugene d'Eon,et al.  A quantized-diffusion model for rendering translucent materials , 2011, ACM Trans. Graph..

[2]  Derek Nowrouzezahrai,et al.  A comprehensive theory of volumetric radiance estimation using photon points and beams , 2011, TOGS.

[3]  Shree K. Nayar,et al.  Acquiring scattering properties of participating media by dilution , 2006, ACM Trans. Graph..

[4]  Derek Nowrouzezahrai,et al.  Progressive Virtual Beam Lights , 2012, Comput. Graph. Forum.

[5]  Per H. Christensen,et al.  An approximate reflectance profile for efficient subsurface scattering , 2015, SIGGRAPH Talks.

[6]  Miloš Hašan,et al.  Virtual spherical lights for many-light rendering of glossy scenes , 2009, SIGGRAPH 2009.

[7]  Per H. Christensen,et al.  Efficient simulation of light transport in scenes with participating media using photon maps , 1998, SIGGRAPH.

[8]  Matthias Zwicker,et al.  The Beam Radiance Estimate for Volumetric Photon Mapping , 2008, SIGGRAPH '08.

[9]  Wojciech Jarosz,et al.  Beyond points and beams , 2017, ACM Trans. Graph..

[10]  Matthias Zwicker,et al.  Progressive photon beams , 2011, ACM Trans. Graph..

[11]  Nicolas Holzschuch,et al.  Accurate Computation of Single Scattering in Participating Media with Refractive Boundaries , 2015, Comput. Graph. Forum.

[12]  Shree K. Nayar,et al.  Acquiring scattering properties of participating media by dilution , 2006, SIGGRAPH 2006.

[13]  Beibei Wang,et al.  Point-Based Rendering for Homogeneous Participating Media with Refractive Boundaries , 2018, IEEE Transactions on Visualization and Computer Graphics.

[14]  Derek Nowrouzezahrai,et al.  Virtual ray lights for rendering scenes with participating media , 2012, ACM Trans. Graph..

[15]  Beibei Wang,et al.  Point-Based Light Transport for Participating Media with Refractive Boundaries , 2016, EGSR.

[16]  Thomas Müller,et al.  Efficient rendering of heterogeneous polydisperse granular media , 2016, ACM Trans. Graph..

[17]  Henrik Wann Jensen,et al.  A rapid hierarchical rendering technique for translucent materials , 2005, ACM Trans. Graph..

[18]  Steve Marschner,et al.  Manifold exploration , 2012, ACM Trans. Graph..

[19]  Derek Nowrouzezahrai,et al.  Joint importance sampling of low-order volumetric scattering , 2013, ACM Trans. Graph..

[20]  James T. Kajiya,et al.  The rendering equation , 1986, SIGGRAPH.

[21]  Steve Marschner,et al.  Eurographics Symposium on Rendering (2007) Jan Kautz and Sumanta Pattanaik (Editors) Abstract Rendering Discrete Random Media Using Precomputed Scattering Solutions , 2022 .

[22]  Steve Marschner,et al.  A practical model for subsurface light transport , 2001, SIGGRAPH.

[23]  Per H. Christensen,et al.  Photon Beam Diffusion: A Hybrid Monte Carlo Method for Subsurface Scattering , 2013, Comput. Graph. Forum.

[24]  Bruce Walter,et al.  Virtual spherical lights for many-light rendering of glossy scenes , 2009, ACM Trans. Graph..

[25]  Shree K. Nayar,et al.  An empirical BSSRDF model , 2009, ACM Trans. Graph..

[26]  G. Rybicki Radiative transfer , 2019, Climate Change and Terrestrial Ecosystem Modeling.

[27]  Steve Marschner,et al.  Multi-scale modeling and rendering of granular materials , 2015, ACM Trans. Graph..

[28]  Derek Nowrouzezahrai,et al.  Unifying points, beams, and paths in volumetric light transport simulation , 2014, ACM Trans. Graph..

[29]  Alexander Keller,et al.  Instant radiosity , 1997, SIGGRAPH.

[30]  Toshiya Hachisuka,et al.  Directional Dipole Model for Subsurface Scattering , 2014, ACM Trans. Graph..