Morphology-based macro-scale finite-element timber models

This paper presents a non-invasive technique that can extract an accurate geometrical description of growth layer surfaces in wood. The method has been validated for sawn spruce elements (Picea Abies Karst.). The aim is to implement a procedure to model domain geometry in the numerical analysis of wooden elements, taking into account the intrinsic variability of the material. The approach presented by the authors avoids internal imaging and achieves a digital 3D model of growth layers, using, as input data, images of the ring pattern, which represents the growth surface boundary curves, visible on all the cut faces of the wooden element.

[1]  Ian Turner,et al.  A mesoscopic drying model applied to the growth rings of softwood: mesh generation and simulation results , 2008 .

[2]  Raphael L. Levien,et al.  From Spiral to Spline: Optimal Techniques in Interactive Curve Design , 2009 .

[3]  S. M. Cramer,et al.  Predicting lumber tensile stiffness and strength with local grain angle measurements and failure analysis , 2007 .

[4]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[5]  Evangelos J. Biblis,et al.  Transitional variation and relationships among properties within loblolly pine growth rings , 1969, Wood Science and Technology.

[6]  Robert A. Schowengerdt,et al.  Design of a computer vision based tree ring dating system , 1998, 1998 IEEE Southwest Symposium on Image Analysis and Interpretation (Cat. No.98EX165).

[7]  Tom Chen,et al.  VLSI Architecture for Real-Time Edge Linking , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Steven M. Cramer,et al.  Earlywood and latewood elastic properties in loblolly pine , 2005 .

[9]  John A. Nairn,et al.  Material point method simulations of transverse fracture in wood with realistic morphologies , 2007 .

[10]  G. Matheron Random Sets and Integral Geometry , 1976 .

[11]  P. Perré,et al.  Microscopic tensile tests in the transverse plane of earlywood and latewood parts of spruce , 2000, Wood Science and Technology.

[12]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[13]  Herbert Freeman,et al.  On the Encoding of Arbitrary Geometric Configurations , 1961, IRE Trans. Electron. Comput..

[14]  Steven M. Cramer,et al.  Micromechanical measurement of wood substructure properties. , 2002 .

[15]  Sarifuddin,et al.  Tree ring analysis , 1999, Canadian Conference on Electrical and Computer Engineering, 2005..

[16]  Claudia Fassino,et al.  Stable border bases for ideals of points , 2008, J. Symb. Comput..

[17]  Kent Persson,et al.  Micromechanical Modelling of Wood and Fibre Properties , 2000 .

[18]  Mubarak Shah,et al.  A Fast algorithm for active contours and curvature estimation , 1992, CVGIP Image Underst..

[19]  Pierre Soille,et al.  Tree ring area measurements using morphological image analysis , 2001 .

[20]  D. J. Cown,et al.  A wood densitometer using direct scanning with X-rays , 1983, Wood Science and Technology.

[21]  S. Koponen,et al.  Modelling elastic and shrinkage properties of wood based on cell structure , 2004, Wood Science and Technology.

[22]  James R. Goodman,et al.  Finite Element Method for Wood Mechanics , 1972 .

[23]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  R. J. Astley,et al.  Modelling the elastic properties of softwood , 2009, Holz als Roh- und Werkstoff.