A Geophysical Perspective on the Bulk Composition of Mars

We invert the Martian tidal response and mean mass and moment of inertia for chemical composition, thermal state, and interior structure. The inversion combines phase equilibrium computations with a laboratory‐based viscoelastic dissipation model. The rheological model, which is based on measurements of anhydrous and melt‐free olivine, is both temperature and grain size sensitive and imposes strong constraints on interior structure. The bottom of the lithosphere, defined as the location where the conductive geotherm meets the mantle adiabat, occurs deep within the upper mantle (∼200–400 km depth) resulting in apparent upper mantle low‐velocity zones. Assuming an Fe‐FeS core, our results indicate (1) a mantle with a Mg# (molar Mg/Mg+Fe) of ∼0.75 in agreement with earlier geochemical estimates based on analysis of Martian meteorites; (2) absence of bridgmanite‐ and ferropericlase‐dominated basal layer; (3) core compositions (15–18.5 wt% S), core radii (1,730–1,840 km), and core‐mantle boundary temperatures (1620–1690°C) that, together with the eutectic‐like core compositions, suggest that the core is liquid; and (4) bulk Martian compositions with a Fe/Si (weight ratio) of 1.66–1.81. We show that the inversion results can be used in tandem with geodynamic simulations to identify plausible geodynamic scenarios and parameters. Specifically, we find that the inversion results are largely reproducible by stagnant lid convection models for a range of initial viscosities (∼1018–1020 Pa s) and radioactive element partitioning between crust and mantle around 0.01–0.1. The geodynamic models predict a mean surface heat flow between 15 and 25 mW/m2.

[1]  G. Helffrich Mars core structure—concise review and anticipated insights from InSight , 2017, Progress in Earth and Planetary Science.

[2]  T. Gudkova,et al.  On Estimating the Dissipative Factor of the Martian Interior , 2017 .

[3]  Jeroen Tromp,et al.  Planned Products of the Mars Structure Service for the InSight Mission to Mars , 2017 .

[4]  Y. Takei Effects of Partial Melting on Seismic Velocity and Attenuation: A New Insight from Experiments , 2017 .

[5]  B. Banerdt,et al.  Preparing for InSight: An Invitation to Participate in a Blind Test for Martian Seismicity , 2017 .

[6]  P. Tackley,et al.  Continental crust formation on early Earth controlled by intrusive magmatism , 2017, Nature.

[7]  B. Banerdt,et al.  Simulations of Seismic Wave Propagation on Mars , 2017 .

[8]  M. van Driel,et al.  A probabilistic framework for single-station location of seismicity on Earth and Mars , 2017 .

[9]  Simon C. Stähler,et al.  From Initial Models of Seismicity, Structure and Noise to Synthetic Seismograms for Mars , 2017 .

[10]  John H. Jones,et al.  A review of volatiles in the Martian interior , 2016 .

[11]  Qingsong Li,et al.  Water undersaturated mantle plume volcanism on present‐day Mars , 2016 .

[12]  David Mimoun,et al.  Single-station and single-event marsquake location and inversion for structure using synthetic Martian waveforms , 2016 .

[13]  William M. Folkner,et al.  An improved JPL Mars gravity field and orientation from Mars orbiter and lander tracking data , 2016 .

[14]  Frank G. Lemoine,et al.  Seasonal and static Gravity Field of Mars from MGS, Mars Odyssey and MRO Radio Science , 2016 .

[15]  Amir Khan,et al.  Uncertainty of mantle geophysical properties computed from phase equilibrium models , 2016 .

[16]  Z. Eilon,et al.  The importance of grain size to mantle dynamics and seismological observations , 2016 .

[17]  T. Spohn,et al.  How large are present‐day heat flux variations across the surface of Mars? , 2016 .

[18]  T. Grove,et al.  Melting of the primitive martian mantle at 0.5-2.2 GPa and the origin of basalts and alkaline rocks on Mars , 2015 .

[19]  C. Sandu,et al.  The effects of mantle composition on the peridotite solidus: Implications for the magmatic history of Mars , 2015 .

[20]  M. Efroimsky TIDAL EVOLUTION OF ASTEROIDAL BINARIES. RULED BY VISCOSITY. IGNORANT OF RIGIDITY , 2015, 1506.09157.

[21]  James G. Williams,et al.  Tides on the Moon: Theory and determination of dissipation , 2015 .

[22]  Thorne Lay,et al.  Seismological implications of a lithospheric low seismic velocity zone in Mars , 2015 .

[23]  J. Filiberto,et al.  Constraints on the depth and thermal vigor of melting in the Martian mantle , 2015 .

[24]  V. Zharkov,et al.  Seismic model of Mars: Effects of hydration , 2014 .

[25]  J. Haruyama,et al.  Strong tidal heating in an ultralow-viscosity zone at the core–mantle boundary of the Moon , 2014 .

[26]  M. Wieczorek,et al.  Petrological constraints on the density of the Martian crust , 2014 .

[27]  C. Bellis,et al.  Sensitivity of seismic measurements to frequency‐dependent attenuation and upper mantle structure: An initial approach , 2014 .

[28]  Y. Takei,et al.  Temperature, grain size, and chemical controls on polycrystal anelasticity over a broad frequency range extending into the seismic range , 2014 .

[29]  M. Grott,et al.  Thermal evolution and Urey ratio of Mars , 2014 .

[30]  David E. Smith,et al.  Lunar interior properties from the GRAIL mission , 2014 .

[31]  M. Efroimsky,et al.  TIDAL DISSIPATION IN A HOMOGENEOUS SPHERICAL BODY. I. METHODS , 2014, 1406.2376.

[32]  M. Efroimsky,et al.  Tidal dissipation in a homogeneous spherical body. Revisiting the old problem. , 2014 .

[33]  A. Rivoldini,et al.  Mercury’s inner core size and core-crystallization regime , 2014 .

[34]  Sami W. Asmar,et al.  InSight: A Discovery Class Mission to Explore the Interior of Mars , 2014 .

[35]  R. Skelton,et al.  Elastically accommodated grain-boundary sliding: New insights from experiment and modeling , 2014 .

[36]  H. Y. McSween,et al.  2.10 – Mars , 2014 .

[37]  H. Palme,et al.  Cosmochemical Estimates of Mantle Composition , 2014 .

[38]  S. Karato Geophysical constraints on the water content of the lunar mantle and its implications for the origin of the Moon , 2013 .

[39]  G. J. Taylor,et al.  The bulk composition of Mars , 2013 .

[40]  F. Nimmo,et al.  Dissipation at tidal and seismic frequencies in a melt‐free, anhydrous Mars , 2013 .

[41]  H. McSween,et al.  Application of the MELTS algorithm to Martian compositions and implications for magma crystallization , 2013 .

[42]  Amir Khan,et al.  Geophysical evidence for melt in the deep lunar interior and implications for lunar evolution , 2013 .

[43]  L. Wen,et al.  Composition of Mars constrained using geophysical observations and mineral physics modeling , 2013 .

[44]  R. Eanes,et al.  Constraints on Energy Dissipation in the Earth's Body Tide from Satellite Tracking and Altimetry , 2013 .

[45]  K. Matsukage,et al.  Melting of the Martian mantle from 1.0 to 4.5 GPa , 2013 .

[46]  J. Head,et al.  The history of volcanism on Venus , 2013 .

[47]  W. Westrenen,et al.  Core‐mantle differentiation in Mars , 2013 .

[48]  G. Hirth,et al.  Rheology of the Upper Mantle and the Mantle Wedge: A View from the Experimentalists , 2013 .

[49]  W. Banerdt,et al.  Impact of Anelasticity on Mars' Dissipative Properties — Application to the InSight Mission , 2013 .

[50]  S. Solomon,et al.  Thermal and compositional evolution of the martian mantle: Effects of phase transitions and melting , 2013 .

[51]  O. Gasnault,et al.  Long-Term Evolution of the Martian Crust-Mantle System , 2013 .

[52]  T. Nissen‐Meyer,et al.  Triplicated P-wave measurements for waveform tomography of the mantle transition zone , 2012 .

[53]  F. Nimmo,et al.  Dissipation at tidal and seismic frequencies in a melt-free Moon , 2012 .

[54]  S. Solomon,et al.  Thermal and compositional evolution of the martian mantle: Effects of water , 2013 .

[55]  F. McCubbin,et al.  Hydrous melting of the martian mantle produced both depleted and enriched shergottites , 2012 .

[56]  Masaki Ogawa,et al.  Two-dimensional numerical studies on the effects of water on Martian mantle evolution induced by magmatism and solid-state mantle convection , 2012 .

[57]  P. Tackley,et al.  Influence of magmatism on mantle cooling, surface heat flow and Urey ratio , 2012 .

[58]  P. Tackley,et al.  Mantle dynamics in super-Earths: Post-perovskite rheology and self-regulation of viscosity , 2012, 1204.3539.

[59]  P. Lognonné,et al.  INSIGHT and single-station broadband seismology: From signal and noise to interior structure determination , 2012 .

[60]  W. Folkner,et al.  The Rotation and Interior Structure Experiment (RISE) for the InSight Mission to Mars , 2012 .

[61]  G. Helffrich How light element addition can lower core liquid wave speeds , 2012 .

[62]  Christian Krause,et al.  InSight: Measuring the Martian Heat Flow Using the Heat Flow and Physical Properties Package (HP^3) , 2012 .

[63]  M. Efroimsky Bodily tides near spin–orbit resonances , 2011, 1105.6086.

[64]  M. Efroimsky TIDAL DISSIPATION COMPARED TO SEISMIC DISSIPATION: IN SMALL BODIES, EARTHS, AND SUPER-EARTHS , 2011, 1105.3936.

[65]  A. Pommier,et al.  Water storage and early hydrous melting of the Martian mantle , 2011 .

[66]  Y. Takei,et al.  Anelasticity and viscosity of partially molten rock analogue: Toward seismic detection of small quantities of melt , 2011 .

[67]  P. Tackley,et al.  Origin of the martian dichotomy and Tharsis from a giant impact causing massive magmatism , 2011 .

[68]  Y. Takei,et al.  Experimental study of attenuation and dispersion over a broad frequency range: 2. The universal scaling of polycrystalline materials , 2011 .

[69]  V. Dehant,et al.  The deep interior of Venus, Mars, and the Earth: A brief review and the need for planetary surface-based measurements , 2011 .

[70]  L. Chin,et al.  Erratum: Telomere dysfunction induces metabolic and mitochondrial compromise (Nature (2011) 470 (359-365)) , 2011 .

[71]  Véronique Dehant,et al.  Geodesy constraints on the interior structure and composition of Mars , 2011 .

[72]  James Wookey,et al.  Seismic detection of meteorite impacts on Mars , 2011 .

[73]  Lars Stixrude,et al.  Thermodynamics of mantle minerals - II. Phase equilibria , 2011 .

[74]  M. Zuber,et al.  Mars high resolution gravity fields from MRO, Mars seasonal gravity, and other dynamical parameters , 2011 .

[75]  M. Efroimsky Tidal dissipation compared to seismic dissipation : in small bodies , in earths , and in superearths , 2011 .

[76]  David L. Valentine,et al.  Seismic Detection of the Lunar Core , 2011 .

[77]  I. Jackson,et al.  Grainsize-sensitive viscoelastic relaxation in olivine: Towards a robust laboratory-based model for seismological application , 2010 .

[78]  D. Ming,et al.  Stable Isotope Measurements of Martian Atmospheric CO2 at the Phoenix Landing Site , 2010, Science.

[79]  M. Grott,et al.  Crustal recycling, mantle dehydration, and the thermal evolution of Mars , 2010 .

[80]  S. Zhong,et al.  Long-wavelength stagnant lid convection with hemispheric variation in lithospheric thickness: Link between Martian crustal dichotomy and Tharsis? , 2010 .

[81]  E. Hauber,et al.  Martian rifts: Structural geology and geophysics , 2010 .

[82]  James W. Head,et al.  Geologic history of Mars , 2010 .

[83]  C. Reese,et al.  Impact origin for the Martian crustal dichotomy: Half emptied or half filled? , 2010 .

[84]  N. Ohashi,et al.  Grain growth systematics for forsterite ± enstatite aggregates: Effect of lithology on grain size in the upper mantle , 2010 .

[85]  R. A. Jacobson,et al.  THE ORBITS AND MASSES OF THE MARTIAN SATELLITES AND THE LIBRATION OF PHOBOS , 2010 .

[86]  James A. D. Connolly,et al.  The geodynamic equation of state: What and how , 2009 .

[87]  D. Kohlstedt,et al.  Effect of iron content on the creep behavior of olivine: 1. Anhydrous conditions , 2009 .

[88]  Qingsong Li,et al.  Mantle convection controls the observed lateral variations in lithospheric thickness on present‐day Mars , 2009 .

[89]  Tobias Keller,et al.  Towards self-consistent modeling of the martian dichotomy: The influence of one-ridge convection on crustal thickness distribution , 2009 .

[90]  Stephanie C. Werner,et al.  The global martian volcanic evolutionary history , 2009 .

[91]  G. Balmino,et al.  Martian gravity field model and its time variations from MGS and Odyssey data , 2009 .

[92]  T. Gudkova,et al.  The period and Q of the Chandler wobble of Mars , 2009 .

[93]  Shijie Zhong,et al.  Migration of Tharsis volcanism on Mars caused by differential rotation of the lithosphere , 2009 .

[94]  Paul J. Tackley,et al.  Modelling compressible mantle convection with large viscosity contrasts in a three-dimensional spherical shell using the yin-yang grid , 2008 .

[95]  P. Tackley,et al.  Modeling mantle convection in the spherical annulus , 2008 .

[96]  B. Tauzin,et al.  The mantle transition zone as seen by global Pds phases: No clear evidence for a thin transition zone beneath hotspots , 2008 .

[97]  C. Reese,et al.  Grain size variations in the Earth's mantle and the evolution of primordial chemical heterogeneities , 2008 .

[98]  W. Banerdt,et al.  Numerical assessment of the effects of topography and crustal thickness on martian seismograms using a coupled modal solution–spectral element method , 2008 .

[99]  O. Aharonson,et al.  Mega-impact formation of the Mars hemispheric dichotomy , 2008, Nature.

[100]  F. Nimmo,et al.  Implications of an impact origin for the martian hemispheric dichotomy , 2008, Nature.

[101]  M. Grott,et al.  The evolution of the martian elastic lithosphere and implications for crustal and mantle rheology , 2008 .

[102]  S. Karato Deformation of Earth Materials: Contents , 2008 .

[103]  V. Lainey,et al.  Physics of Bodily Tides in Terrestrial Planets and the Appropriate Scales of Dynamical Evolution , 2007, 0709.1995.

[104]  A. Volokitin,et al.  About the secular acceleration of Phobos , 2007 .

[105]  J. H. Roberts,et al.  Long-Term Stability of a Subsurface Ocean on Enceladus , 2007 .

[106]  C. Liebske,et al.  Mars: A New Core-Crystallization Regime , 2007, Science.

[107]  V. Dehant,et al.  First numerical ephemerides of the Martian moons , 2007 .

[108]  J. Maclennan,et al.  Joint inversion of seismic and gravity data for lunar composition and thermal state , 2007 .

[109]  W. Moore,et al.  Dynamics and Thermal History of the Terrestrial Planets, the Moon, and Io , 2007 .

[110]  J. Connolly,et al.  Constraining the Composition and Thermal State of Mars , 2007 .

[111]  Qingsong Li,et al.  Mantle convection and magma production on present‐day Mars: Effects of temperature‐dependent rheology , 2006 .

[112]  Ernst Hauber,et al.  Working models for spatial distribution and level of Mars' seismicity , 2006 .

[113]  A. Rivoldini,et al.  A top-down origin for martian mantle plumes , 2006 .

[114]  P. Shearer,et al.  Constraining seismic velocity and density for the mantle transition zone with reflected and transmitted waveforms , 2006 .

[115]  James H. Roberts,et al.  Degree-1 convection in the Martian mantle and the origin of the hemispheric dichotomy , 2006 .

[116]  Dah-Ning Yuan,et al.  A global solution for the Mars static and seasonal gravity, Mars orientation, Phobos and Deimos masses, and Mars ephemeris , 2006 .

[117]  S. Desai,et al.  Constraints on mantle anelasticity from geodetic observations, and implications for the J2 anomaly , 2006 .

[118]  Kevin Righter,et al.  Compositional Relationships Between Meteorites and Terrestrial Planets , 2006 .

[119]  Tilman Spohn,et al.  Geophysical constraints on the composition and structure of the Martian interior , 2005 .

[120]  S. Hauck,,et al.  Sulfur's impact on core evolution and magnetic field generation on Ganymede , 2005 .

[121]  P. C. Hess,et al.  Possible formation of ancient crust on Mars through magma ocean processes , 2005 .

[122]  T. V. Gudkova,et al.  Construction of Martian Interior Model , 2005 .

[123]  G. J. Taylor,et al.  The Moon: A Taylor perspective , 2005 .

[124]  D. Yamazaki,et al.  Grain growth kinetics of ringwoodite and its implication for rheology of the subducting slab , 2005 .

[125]  P. Tackley,et al.  Deep mantle heat flow and thermal evolution of the Earth's core in thermochemical multiphase models of mantle convection , 2005 .

[126]  Lars Stixrude,et al.  Thermodynamics of mantle minerals – I. Physical properties , 2005 .

[127]  David E. Smith,et al.  Improved estimate of tidal dissipation within Mars from MOLA observations of the shadow of Phobos , 2005 .

[128]  J. Sleewaegen,et al.  Interior structure of terrestrial planets : Modeling Mars' mantle and its electromagnetic, geodetic, and seismic properties , 2005 .

[129]  L. Stixrude,et al.  Mineralogy and elasticity of the oceanic upper mantle: Origin of the low‐velocity zone , 2005 .

[130]  Steven A Hauck,et al.  New Perspectives on Ancient Mars , 2005, Science.

[131]  A. Basilevsky,et al.  Recent and episodic volcanic and glacial activity on Mars revealed by the High Resolution Stereo Camera , 2004, Nature.

[132]  P. Tackley,et al.  Evolution of Helium and Argon Isotopes in a Convecting Mantle: Physics of the Earth and Planetary In , 2004 .

[133]  C. Agee,et al.  Experimental constraints on the origin of Martian meteorites and the composition of the Martian mantle , 2004 .

[134]  J. Gerald,et al.  Shear wave attenuation and dispersion in melt-bearing olivine polycrystals: 2. Microstructural interpretation and seismological implications , 2004 .

[135]  T. Burbine,et al.  Determining the possible building blocks of the Earth and Mars , 2004 .

[136]  S. Maaløe The solidus of harzburgite to 3 GPa pressure: the compositions of primary abyssal tholeiite , 2004 .

[137]  P. Tackley,et al.  Effects of thermo-chemical mantle convection on the thermal evolution of the Earth’s core , 2004 .

[138]  F. Nimmo,et al.  Thermal evolution of the Martian core: Implications for an early dynamo , 2004 .

[139]  Maria T. Zuber,et al.  Thickness of the Martian crust: Improved constraints from geoid-to-topography ratios , 2004 .

[140]  David E. Smith,et al.  Crustal structure of Mars from gravity and topography , 2004 .

[141]  M. Godard,et al.  2.04 – Orogenic, Ophiolitic, and Abyssal Peridotites , 2003 .

[142]  L. Borg,et al.  A petrogenetic model for the origin and compositional variation of the martian basaltic meteorites , 2003 .

[143]  Linda T. Elkins-Tanton,et al.  Magma ocean fractional crystallization and cumulate overturn in terrestrial planets: Implications for Mars , 2003 .

[144]  W. Folkner,et al.  Fluid Core Size of Mars from Detection of the Solar Tide , 2003, Science.

[145]  V. Dehant,et al.  Tidally induced surface displacements, external potential variations, and gravity variations on Mars , 2003 .

[146]  P. Balog,et al.  Equation of state of liquid Fe‐10 wt % S: Implications for the metallic cores of planetary bodies , 2003 .

[147]  S. Murty,et al.  Precursors of Mars: Constraints from nitrogen and oxygen isotopic compositions of martian meteorites , 2003 .

[148]  J. Gerald,et al.  Grain-size-sensitive seismic wave attenuation in polycrystalline olivine , 2002 .

[149]  R. Phillips,et al.  Thermal and crustal evolution of Mars , 2002 .

[150]  Kevin Righter,et al.  Determining the composition of the Earth , 2002, Nature.

[151]  P. Thomas,et al.  Report of the IAU/IAG Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites: 2000 , 2002 .

[152]  J. T. Ratcliff,et al.  Lunar rotational dissipation in solid body and molten core , 2001 .

[153]  V. Solomatov Grain size-dependent viscosity convection and the thermal evolution of the Earth , 2001 .

[154]  D. Stevenson Mars' core and magnetism , 2001, Nature.

[155]  R. Clayton,et al.  Martian Volatiles: Isotopic Composition, Origin, and Evolution , 2001 .

[156]  R. Clayton,et al.  The Accretion, Composition and Early Differentiation of Mars , 2001 .

[157]  David E. Smith,et al.  Ancient Geodynamics and Global-Scale Hydrology on Mars , 2001, Science.

[158]  D. Kohlstedt,et al.  Influence of water on plastic deformation of olivine aggregates 2. Dislocation creep regime , 2000 .

[159]  M. Zuber,et al.  Degree-1 mantle convection and the crustal dichotomy on Mars , 2000 .

[160]  F. Roosbeek Analytical developments of rigid Mars nutation and tide generating potential series , 1999 .

[161]  S. Taylor The Leonard Award Address Presented 1998 July 27, Dublin, Ireland: On the difficulties of making Earth‐like planets , 1999 .

[162]  M. Norman The composition and thickness of the crust of Mars estimated from rare earth elements and neodymium‐isotopic compositions of Martian meteorites , 1999 .

[163]  A. Jambon,et al.  A simple chondritic model of Mars , 1999 .

[164]  Patrick R. Amestoy,et al.  Multifrontal parallel distributed symmetric and unsymmetric solvers , 2000 .

[165]  G. J. Taylor Origin of the Earth and Moon , 1998 .

[166]  S. Karato,et al.  Water, partial melting and the origin of the seismic low velocity and high attenuation zone in the upper mantle , 1998 .

[167]  Y. Fei,et al.  Density profile of an SNC model Martian interior and the moment-of-inertia factor of Mars , 1998 .

[168]  W. Folkner,et al.  Interior structure and seasonal mass redistribution of Mars from radio tracking of Mars Pathfinder. , 1997, Science.

[169]  D. Yuen,et al.  Phase transitions in the Martian mantle: Implications for partially layered convection , 1997 .

[170]  B. Fegley,et al.  An Oxygen Isotope Model for the Composition of Mars , 1997 .

[171]  J. Williams,et al.  Lunar Rotational Dissipation in Solid Body and Core , 1997 .

[172]  Y. Fei,et al.  Mineralogy of the Martian interior up to core‐mantle boundary pressures , 1997 .

[173]  Tilman Spohn,et al.  The interior structure of Mars: Implications from SNC meteorites , 1997 .

[174]  Philippe Lognonné,et al.  Ultra broad band seismology on InterMarsNet , 1996 .

[175]  C. Sotin,et al.  Theoretical seismic models of Mars : the importance of the iron content of the mantle , 1996 .

[176]  Greg Hirth,et al.  Water in the oceanic upper mantle: implications for rheology , 1996 .

[177]  Ulrich R. Christensen,et al.  A one-plume model of martian mantle convection , 1996, Nature.

[178]  Albert Tarantola,et al.  Monte Carlo sampling of solutions to inverse problems , 1995 .

[179]  Charles F. Yoder,et al.  Astrometric and Geodetic Properties of Earth and the Solar System , 1995 .

[180]  H. Wänke,et al.  Chemistry and accretion history of Mars , 1994, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[181]  Harry Y. McSween,et al.  What we have learned about Mars from SNC meteorites , 1994 .

[182]  T. Wagner,et al.  Experimental and natural partitioning of Th, U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts , 1994 .

[183]  W. Anderson,et al.  An equation of state for liquid iron and implications for the Earth's core , 1994 .

[184]  J. Holloway,et al.  Anhydrous partial melting of an iron-rich mantle II: primary melt compositions at 15 kbar , 1994 .

[185]  T. Gudkova,et al.  On the dissipative factor of the Martian interiors , 1993 .

[186]  Ian Gladwell,et al.  RKSUITE: A Suite of Explicit Runge-Kutta Codes , 1993 .

[187]  Patrick Wu,et al.  Rheology of the Upper Mantle: A Synthesis , 1993, Science.

[188]  B. Mosser,et al.  Planetary seismology , 1993 .

[189]  S. Hart,et al.  Experimental cpx/melt partitioning of 24 trace elements , 1993 .

[190]  Kenneth L. Tanaka,et al.  A Prediction of Mars Seismicity from Surface Faulting , 1992, Science.

[191]  H. Waenke,et al.  The bulk composition, mineralogy and internal structure of Mars , 1992 .

[192]  Don L. Anderson,et al.  Scientific rationale and requirements for a global seismic network on Mars. Report of a workshop. , 1991 .

[193]  J. Wasson,et al.  Compositions of chondrites , 1988, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[194]  H. Wänke,et al.  Volatiles on Earth and Mars: A comparison , 1987 .

[195]  H. McSween SNC meteorites: Clues to Martian petrologic evolution? , 1985 .

[196]  G. Dreibus,et al.  Mars, a Volatile-Rich Planet , 1985 .

[197]  B. Wood,et al.  A thermodynamic model for subsolidus equilibria in the system CaOMgOAl2O3SiO2 , 1984 .

[198]  C. F. Yoder Tidal rigidity of Phobos , 1982 .

[199]  D. Anderson,et al.  A model of dislocation-controlled rheology for the mantle , 1981, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[200]  S. Taylor Refractory and moderately volatile element abundances in the earth, moon and meteorites. , 1980 .

[201]  John W. Morgan,et al.  Chemical composition of Mars , 1979 .

[202]  H. McSween,et al.  Petrology and origin of the shergottite meteorites , 1979 .

[203]  J. M. Toguri,et al.  Densities of the Molten Fes, Fes–Cu2S and Fe–S–O Systems—Utilizing A Bottom-Balance Archimedean Technique , 1979 .

[204]  K. Lambeck On the orbital evolution of the Martian satellites , 1979 .

[205]  J. Byerlee Friction of rocks , 1978 .

[206]  D. L. Anderson,et al.  Theoretical models for Mars and their seismic properties , 1978 .

[207]  Y. Nakamura,et al.  Seismic energy transmission in an intensively scattering environment , 1977 .

[208]  G. Born,et al.  Secular acceleration of Phobos and Q of Mars. [tidal dissipation function of Mars] , 1976 .

[209]  M. F. Ashby,et al.  On the rheology of the upper mantle , 1973 .

[210]  P. Achinstein THEORETICAL MODELS* , 1965, The British Journal for the Philosophy of Science.

[211]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[212]  F. Birch,et al.  Density and composition of mantle and core , 1964 .