The Fermi—Pasta—Ulam Problem and the Metastability Perspective

[1]  A. Carati An Averaging Theorem for Hamiltonian Dynamical Systems in the Thermodynamic Limit , 2007 .

[2]  Dario Bambusi,et al.  On Metastability in FPU , 2006 .

[3]  P. Lorenzoni,et al.  Metastability and dispersive shock waves in the Fermi–Pasta–Ulam system , 2005, nlin/0511026.

[4]  H. Larralde,et al.  Metastability for Markov processes with detailed balance. , 2005, Physical review letters.

[5]  David K Campbell,et al.  Introduction: The Fermi-Pasta-Ulam problem--the first fifty years. , 2005, Chaos.

[6]  G. Benettin,et al.  Time scale for energy equipartition in a two-dimensional FPU model. , 2005, Chaos.

[7]  D. Bambusi,et al.  Korteweg-de Vries equation and energy sharing in Fermi-Pasta-Ulam. , 2005, Chaos.

[8]  L. Galgani,et al.  The Fermi-Pasta-Ulam problem as a challenge for the foundations of physics. , 2005, Chaos.

[9]  E. Olivieri,et al.  Large deviations and metastability , 2005 .

[10]  Firenze,et al.  Weak and strong chaos in Fermi-Pasta-Ulam models and beyond. , 2004, Chaos.

[11]  L. Galgani,et al.  Localization of energy in FPU chains , 2004 .

[12]  A. Carati Thermodynamics and time averages , 2004, cond-mat/0407768.

[13]  Simone Paleari,et al.  Exponentially long times to equipartition in the thermodynamic limit , 2004 .

[14]  A. Ponno Soliton theory and the Fermi-Pasta-Ulam problem in the thermodynamic limit , 2003 .

[15]  L. Galgani,et al.  On the Definition of Temperature in FPU Systems , 2003, cond-mat/0311448.

[16]  A. Tenenbaum,et al.  Quantumlike short-time behavior of a classical crystal. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Andrea Carati,et al.  Lévy flights in the Landau-Teller model of molecular collisions. , 2003, Physical review letters.

[18]  L. Galgani,et al.  The problem of the rate of thermalization and the relations between classical and quantum mechanics , 2002 .

[19]  P. Kramer,et al.  Stages of Energy Transfer in the FPU Model , 2002, nlin/0210008.

[20]  A. Carati,et al.  The nonlinear Schrödinger equation as a resonant normal form , 2001 .

[21]  F. Guerra,et al.  Analytical estimate of stochasticity thresholds in Fermi-Pasta-Ulam and straight phi(4) models. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[22]  Carati,et al.  Analog of Planck's formula and effective temperature in classical statistical mechanics far from equilibrium , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[23]  A. Lichtenberg,et al.  Finite times to equipartition in the thermodynamic limit. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[24]  G. Benettin,et al.  Exponentially Long Equilibrium Times in a One-Dimensional Collisional Model of Classical Gas , 1999 .

[25]  Thomas P. Weissert,et al.  The Genesis of Simulation in Dynamics: Pursuing the Fermi-Pasta-Ulam Problem , 1999 .

[26]  L. Galgani,et al.  On the Specific Heat of Fermi–Pasta–Ulam Systems and Their Glassy Behavior , 1999 .

[27]  G. Parisi On the approach to equilibrium of a Hamiltonian chain of anharmonic oscillators , 1997, cond-mat/9704213.

[28]  D. Shepelyansky Low-energy chaos in the Fermi-Pasta-Ulam problem , 1996, chao-dyn/9611005.

[29]  Clementi,et al.  Riemannian theory of Hamiltonian chaos and Lyapunov exponents. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[30]  G. Benettin,et al.  A rigorous implementation of the Jeans - Landau - Teller approximation for adiabatic invariants , 1995, chao-dyn/9509006.

[31]  Kantz,et al.  Shock waves and time scales to reach equipartition in the Fermi-Pasta-Ulam model. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[32]  Lívi,et al.  Gaussian model for chaotic instability of Hamiltonian flows. , 1995, Physical review letters.

[33]  H. Kantz,et al.  Equipartition thresholds in chains of anharmonic oscillators , 1994 .

[34]  G. Benettin,et al.  On the Landau-Teller approximation for energy exchanges with fast degrees of freedom , 1993 .

[35]  Dario Bambusi,et al.  Exponential stability of states close to resonance in infinite-dimensional Hamiltonian systems , 1993 .

[36]  Antonio Giorgilli,et al.  On the problem of energy equipartition for large systems of the Fermi-Pasta-Ulam type: analytical and numerical estimates , 1992 .

[37]  M. Pettini,et al.  Relaxation properties and ergodicity breaking in nonlinear Hamiltonian dynamics. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[38]  H. Kantz Vanishing stability thresholds in the thermodynamic limit of nonintegrable conservative systems , 1989 .

[39]  A. Vulpiani,et al.  Chaotic behavior in nonlinear Hamiltonian systems and equilibrium statistical mechanics , 1987 .

[40]  Butera,et al.  Phase transitions and Lyapunov characteristic exponents. , 1987, Physical review. A, General physics.

[41]  Antonio Giorgilli,et al.  Exponential law for the equipartition times among translational and vibrational degrees of freedom , 1987 .

[42]  G. Benettin,et al.  Classical perturbation theory for systems of weakly coupled rotators , 1985 .

[43]  A. Vulpiani,et al.  Short-time asymptotics in classical nonlinear wave equations , 1985 .

[44]  G. Benettin,et al.  Numerical investigations on a chain of weakly coupled rotators in the light of classical perturbation theory , 1985 .

[45]  G. Benettin,et al.  A proof of Nekhoroshev's theorem for the stability times in nearly integrable Hamiltonian systems , 1985 .

[46]  Nagel,et al.  Specific-heat spectroscopy of the glass transition. , 1985, Physical review letters.

[47]  Vulpiani,et al.  Further results on the equipartition threshold in large nonlinear Hamiltonian systems. , 1985, Physical review. A, General physics.

[48]  Vulpiani,et al.  Equipartition threshold in nonlinear large Hamiltonian systems: The Fermi-Pasta-Ulam model. , 1985, Physical review. A, General physics.

[49]  G. Benettin,et al.  Boltzmann's ultraviolet cutoff and Nekhoroshev's theorem on Arnold diffusion , 1984, Nature.

[50]  P. Butera,et al.  Complex poles, spatial intermittencies, and energy transfer in a classical nonlinear string , 1984 .

[51]  G. Benettin,et al.  A proof of Kolmogorov’s theorem on invariant tori using canonical transformations defined by the Lie method , 1984 .

[52]  A. Vulpiani,et al.  Relaxation to different stationary states in the Fermi-Pasta-Ulam model , 1983 .

[53]  A. Vulpiani,et al.  Intermittent behaviour in non-linear Hamiltonian systems far from equilibrium , 1983 .

[54]  G. Benettin,et al.  An extension of the Poincaré-Fermi theorem on the nonexistence of invariant manifolds in nearly integrable Hamiltonian systems , 1982 .

[55]  L. Peliti,et al.  Approach to equilibrium in a chain of nonlinear oscillators , 1982 .

[56]  U. Frisch,et al.  Intermittency in nonlinear dynamics and singularities at complex times , 1981 .

[57]  P. Butera,et al.  Stochasticity thresholds in a lattice field theory , 1980 .

[58]  N N Nekhoroshev,et al.  AN EXPONENTIAL ESTIMATE OF THE TIME OF STABILITY OF NEARLY-INTEGRABLE HAMILTONIAN SYSTEMS , 1977 .

[59]  L. Galgani,et al.  Numerical computations on a stochastic parameter related to the Kolmogorov entropy , 1976 .

[60]  L. Galgani,et al.  Planck-like Distributions in Classical Nonlinear Mechanics , 1972 .

[61]  L. Galgani,et al.  Recent progress in classical nonlinear dynamics , 1972 .

[62]  L. Galgani,et al.  Zero-point energy in classical non-linear mechanics☆ , 1972 .

[63]  P. Bocchieri,et al.  Anharmonic Chain with Lennard-Jones Interaction , 1970 .

[64]  B. Chirikov,et al.  Statistical Properties of a Nonlinear String , 1966 .

[65]  N. Zabusky,et al.  Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States , 1965 .

[66]  Joseph Ford,et al.  Equipartition of Energy for Nonlinear Systems , 1961 .

[67]  J. Neumann,et al.  Physical Applications of the Ergodic Hypothesis. , 1932, Proceedings of the National Academy of Sciences of the United States of America.

[68]  Dario Bambusi,et al.  Resonance, Metastability and Blow up in FPU , 2007 .

[69]  L. Galgani,et al.  Dynamical Systems and Thermodynamics , 2006 .

[70]  D. Bambusi,et al.  ENERGY CASCADE IN FERMI-PASTA-ULAM MODELS , 2005 .

[71]  G. Zaslavsky,et al.  Chaotic dynamics and transport in classical and quantum systems , 2005 .

[72]  A. Ponno The Fermi-Pasta-Ulam Problem in the Thermodynamic Limit , 2005 .

[73]  A. Ponno Soliton theory and the Fermi-Pasta-Ulam problem in the thermodynamic limit , 2003 .

[74]  Andrea Carati,et al.  Theory of Dynamical Systems and the Relations Between Classical and Quantum Mechanics , 2001 .

[75]  L. Galgani,et al.  Einstein's Nonconventional Conception of the Photon and the Modern Theory of Dynamical Systems , 2001 .

[76]  F. Guerra,et al.  Analytical estimate of stochasticity thresholds in Fermi-Pasta-Ulam andw models , 2000 .

[77]  A. Tenenbaum,et al.  CLASSICAL SPECIFIC HEAT OF AN ATOMIC LATTICE AT LOW TEMPERATURE, REVISITED , 1998 .

[78]  G. Benettin,et al.  Classical “freezing” of fast rotations. A numerical test of the Boltzmann-Jeans conjecture , 1991 .

[79]  Antonio Giorgilli,et al.  Realization of holonomic constraints and freezing of high frequency degrees of freedom in the light of classical perturbation theory. Part I , 1987 .

[80]  T. Tatsumi Theory of Homogeneous Turbulence , 1980 .

[81]  A. Kolmogorov,et al.  Preservation of conditionally periodic movements with small change in the Hamilton function , 1979 .

[82]  Henri Poincaré,et al.  méthodes nouvelles de la mécanique céleste , 1892 .