Electronic structure of multiwall boron nitride nanotubes

We report on electron energy-loss spectroscopy studies of the electronic properties of multiwall boron nitride nanotubes, in terms of the $\mathrm{B}1s$ and $\mathrm{N}1s$ excitation edges and of the q-dependent energy-loss function. The q-dependent dielectric function shows a strong dispersion in momentum of the \ensuremath{\pi} and $\ensuremath{\sigma}+\ensuremath{\pi}$ plasmons indicating that they are spatially delocalized along the tube axis as expected according to their characteristic two-dimensional graphiticlike structure, and nondispersing excitations at 11 and 12 eV. The dielectric function \ensuremath{\varepsilon} of the boron nitride nanotubes reveals an intense $\ensuremath{\pi}\ensuremath{-}{\ensuremath{\pi}}^{*}$ interband transition at 5.4 eV, which is shifted to lower energies by 0.6 eV when compared to hexagonal BN in good agreement with recent theoretical band-structure calculations of boron nitride nanotubes.

[1]  Y. Bando,et al.  MoO3-promoted synthesis of multi-walled BN nanotubes from C nanotube templates , 2000 .

[2]  K. Zeppenfeld Nichtsenkrechte Interbandübergänge in Graphit durch unelastische Elektronenstreuung , 1971 .

[3]  P. Bernier,et al.  Elastic Properties of C and B x C y N z Composite Nanotubes , 1998 .

[4]  S. Louie,et al.  Electronic structure of radially deformed BN and BC 3 nanotubes , 2001 .

[5]  Z. G. Li,et al.  The three-dimensional of carbon nanotubes by high-resolution electron microscopy , 1993 .

[6]  M. Knupfer,et al.  Filling factors, structural and electronic properties of C60 molecules in single-walled carbon nanotubes , 2002 .

[7]  F. Willaime,et al.  Boron nitride nanotubes with reduced numbers of layers synthesized by arc discharge. , 1996, Physical review letters.

[8]  M. Knupfer,et al.  Detailed analysis of the mean diameter and diameter distribution of single-wall carbonnanotubes from their optical response , 2002, cond-mat/0204324.

[9]  Egbert Zojer,et al.  Universal exciton size scaling in π conjugated systems , 2000 .

[10]  R. Resta Thomas-Fermi dielectric screening in semiconductors , 1977 .

[11]  S. Okada,et al.  Semiconducting form of the first-row elements: C60 chain encapsulated in BN nanotubes , 2001 .

[12]  J. Fink Recent Developments in Energy-Loss Spectroscopy , 1989 .

[13]  Takahiro Hayashi,et al.  Formation of carbon nanotubes and their filling with metallic fibers on ion-emitting field anodes , 1998 .

[14]  Tarrio,et al.  Interband transitions, plasmons, and dispersion in hexagonal boron nitride. , 1989, Physical review. B, Condensed matter.

[15]  Cohen,et al.  Quasiparticle band structure of bulk hexagonal boron nitride and related systems. , 1995, Physical review. B, Condensed matter.

[16]  Hayashi,et al.  Interlayer spacings in carbon nanotubes. , 1993, Physical review. B, Condensed matter.

[17]  M. Terrones,et al.  Hysteresis shift in Fe-filled carbon nanotubes due to γ-Fe , 2002 .

[18]  J. Robertson Electronic structure and core exciton of hexagonal boron nitride , 1984 .

[19]  A. Rinzler,et al.  LOCALIZED AND DELOCALIZED ELECTRONIC STATES IN SINGLE-WALL CARBON NANOTUBES , 1998 .

[20]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[21]  Y. Bando,et al.  Synthesis of boron nitride nanotubes from carbon nanotubes by a substitution reaction , 1998 .

[22]  Ching,et al.  Calculation of ground-state and optical properties of boron nitrides in the hexagonal, cubic, and wurtzite structures. , 1991, Physical review. B, Condensed matter.

[23]  Y. Saito,et al.  Electron energy-loss spectroscopy study of the electronic structure of boron nitride nanotubes , 1998 .

[24]  Y. Bando,et al.  SINGLE-WALLED B-DOPED CARBON, B/N-DOPED CARBON AND BN NANOTUBES SYNTHESIZED FROM SINGLE-WALLED CARBON NANOTUBES THROUGH A SUBSTITUTION REACTION , 1999 .

[25]  L. Terminello,et al.  Identification of ternary boron–carbon–nitrogen hexagonal phases by x-ray absorption spectroscopy , 2001 .

[26]  W. Pompe,et al.  Impact of catalyst coarsening on the formation of single-wall carbon nanotubes , 2001 .

[27]  C. Zhi,et al.  Adjustable boron carbonitride nanotubes , 2002 .

[28]  Steven G. Louie,et al.  Stability and Band Gap Constancy of Boron Nitride Nanotubes , 1994 .

[29]  M. Knupfer,et al.  Electronic structure and optical properties of concentric-shell fullerenes from electron-energy-loss spectroscopy in transmission , 2001, Physical Review B.

[30]  A. Rinzler,et al.  Electronic structure of atomically resolved carbon nanotubes , 1998, Nature.

[31]  C. H. Perry,et al.  Normal Modes in Hexagonal Boron Nitride , 1966 .

[32]  W. Tong,et al.  Near‐edge x‐ray absorption fine structure study of bonding modifications in BN thin films by ion implantation , 1996 .

[33]  L. Schlapbach,et al.  Electron field emission from phase pure nanotube films grown in a methane/hydrogen plasma , 1998 .

[34]  S. Okada,et al.  Interwall interaction and electronic structure of double-walled BN nanotubes , 2002 .

[35]  X. Bai,et al.  Blue-violet photoluminescence from large-scale highly aligned boron carbonitride nanofibers , 2000 .

[36]  Cohen,et al.  Theory of graphitic boron nitride nanotubes. , 1994, Physical review. B, Condensed matter.