Probabilistic Color Constancy

In this paper, we propose a novel unsupervised color constancy method, called Probabilistic Color Constancy (PCC). We define a framework for estimating the illumination of a scene by weighting the contribution of different image regions using a graph-based representation of the image. To estimate the weight of each (super-)pixel, we rely on two assumptions: (Super-)pixels with similar colors contribute similarly and darker (super-)pixels contribute less. The resulting system has one global optimum solution. The proposed method achieves competitive performance, compared to the state-of-the-art, on INTEL-TAU dataset.

[1]  Stephen Lin,et al.  FC^4: Fully Convolutional Color Constancy with Confidence-Weighted Pooling , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[2]  Alexandros Iosifidis,et al.  Bag of Color Features for Color Constancy , 2019, IEEE Transactions on Image Processing.

[3]  Sven Loncaric,et al.  Unsupervised Learning for Color Constancy , 2017, VISIGRAPP.

[4]  Carlo Gatta,et al.  Color correction between gray world and white patch , 2002, IS&T/SPIE Electronic Imaging.

[5]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[6]  Dilip K Prasad,et al.  Illuminant estimation for color constancy: why spatial-domain methods work and the role of the color distribution. , 2014, Journal of the Optical Society of America. A, Optics, image science, and vision.

[7]  Joost van de Weijer,et al.  Computational Color Constancy: Survey and Experiments , 2011, IEEE Transactions on Image Processing.

[8]  Alexandros Iosifidis,et al.  Color Constancy Convolutional Autoencoder , 2019, 2019 IEEE Symposium Series on Computational Intelligence (SSCI).

[9]  Alexandros Iosifidis,et al.  INTEL-TAU: A Color Constancy Dataset , 2019, IEEE Access.

[10]  L. Maloney,et al.  Color constancy: a method for recovering surface spectral reflectance. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[11]  Alexandros Iosifidis,et al.  Probabilistic saliency estimation , 2016, Pattern Recognit..

[12]  Vladimir Kolmogorov,et al.  Graph cut based image segmentation with connectivity priors , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[13]  S. Süsstrunk,et al.  SLIC Superpixels ? , 2010 .

[14]  Yogesh Rathi,et al.  Multi-Object Tracking Through Clutter Using Graph Cuts , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[15]  Jonathan Cepeda-Negrete,et al.  Gray-World Assumption on Perceptual Color Spaces , 2013, PSIVT.

[16]  Jiri Matas,et al.  On Finding Gray Pixels , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[17]  Graham D. Finlayson,et al.  Re-evaluating colour constancy algorithms , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[18]  Alexandros Iosifidis,et al.  Learning graph affinities for spectral graph-based salient object detection , 2017, Pattern Recognit..

[19]  Raimondo Schettini,et al.  Color constancy using CNNs , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[20]  Graham D. Finlayson,et al.  Reproduction Angular Error: An Improved Performance Metric for Illuminant Estimation , 2014, BMVC.

[21]  Kai-Fu Yang,et al.  Efficient illuminant estimation for color constancy using grey pixels , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[22]  Graham D. Finlayson,et al.  Shades of Gray and Colour Constancy , 2004, CIC.