Rheology and microstructure in concentrated noncolloidal suspensions

The rheological behavior of a monodisperse suspension of non-Brownian particles undergoing simple shear flow in the presence of a weak interparticle force is studied using accelerated Stokesian dynamics. The availability of a faster numerical algorithm permits the investigation of larger systems (typically of 512 particles), and accurate results for the suspension viscosity, first and second normal stress differences, and the particle pressure are determined as a function of the volume fraction. The system microstructure, expressed through the pair-distribution function, is also studied and it is demonstrated how the resulting anisotropy in the pair-distribution function is correlated with the suspension non-Newtonian behavior. The ratio of the normal to excess shear stress is found to be an increasing function of the volume fraction, suggesting different volume fraction scalings for different elements of the stress tensor. The relative strength and range of the interparticle force is varied and its effec...

[1]  Andreas Acrivos,et al.  On the creeping motion of two arbitrary-sized touching spheres in a linear shear field , 1973, Journal of Fluid Mechanics.

[2]  Salvatore Torquato,et al.  Computer simulations of dense hard‐sphere systems , 1996 .

[3]  John F. Brady,et al.  Microstructure of strongly sheared suspensions and its impact on rheology and diffusion , 1997, Journal of Fluid Mechanics.

[4]  John F. Brady,et al.  Dynamic simulation of sheared suspensions. I. General method , 1984 .

[5]  Francis Gadala-Maria,et al.  Fore‐and‐Aft Asymmetry in a Concentrated Suspension of Solid Spheres , 1987 .

[6]  David T. Leighton,et al.  The characterization of the total stress of concentrated suspensions of noncolloidal spheres in Newtonian fluids , 2000 .

[7]  David J. Jeffrey,et al.  The pressure moments for two rigid spheres in low-Reynolds-number flow , 1993 .

[8]  I. Statistical mechanics of bubbly liquids. II. Behavior of sheared suspensions of non-Brownian particles , 1998 .

[9]  R. C. Ball,et al.  THE PATHOLOGICAL BEHAVIOUR OF SHEARED HARD SPHERES WITH HYDRODYNAMIC INTERACTIONS , 1995 .

[10]  John F. Brady,et al.  The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulation , 1985, Journal of Fluid Mechanics.

[11]  Norman J. Wagner,et al.  The effects of particle size on reversible shear thickening of concentrated colloidal dispersions , 2001 .

[12]  J. Brady,et al.  Stokesian Dynamics simulation of Brownian suspensions , 1996, Journal of Fluid Mechanics.

[13]  D. I. Dratler,et al.  Dynamic simulation of suspensions of non-Brownian hard spheres , 1996, Journal of Fluid Mechanics.

[14]  F. Gadala-Maria The rheology of concentrated suspensions , 1979 .

[15]  D. S. Pearson,et al.  Viscoelastic behavior of concentrated spherical suspensions , 1994 .

[16]  C. Kruif,et al.  Hard‐sphere Colloidal Dispersions: The Scaling of Rheological Properties with Particle Size, Volume Fraction, and Shear Rate , 1989 .

[17]  John F. Brady,et al.  The non-Newtonian rheology of dilute colloidal suspensions , 2002, Journal of Fluid Mechanics.

[18]  J. Brady,et al.  Pressure-driven flow of suspensions: simulation and theory , 1994, Journal of Fluid Mechanics.

[19]  Robert H. Davis,et al.  The viscosity of a dilute suspension of rough spheres , 1999, Journal of Fluid Mechanics.

[20]  Robert H. Davis Effects of surface roughness on a sphere sedimenting through a dilute suspension of neutrally buoyant spheres , 1992 .

[21]  P. Nott,et al.  Normal stresses and microstructure in bounded sheared suspensions via Stokesian Dynamics simulations , 2000, Journal of Fluid Mechanics.

[22]  John F. Brady,et al.  Accelerated Stokesian Dynamics simulations , 2001, Journal of Fluid Mechanics.

[23]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[24]  R. Pätzold Die Abhängigkeit des Fließverhaltens konzentrierter Kugelsuspensionen von der Strömungsform: Ein Vergleich der Viskosität in Scher- und Dehnströmungen , 1980 .

[25]  R. Rutgers,et al.  Relative viscosity of suspensions of rigid spheres in Newtonian liquids , 1962 .

[26]  Bruce J. Ackerson,et al.  Shear induced order and shear processing of model hard sphere suspensions , 1990 .

[27]  J. Brady,et al.  Structure, diffusion and rheology of Brownian suspensions by Stokesian Dynamics simulation , 2000, Journal of Fluid Mechanics.

[28]  D. Leighton,et al.  Normal stress and diffusion in a dilute suspension of hard spheres undergoing simple shear , 2001 .

[29]  C. Zukoski,et al.  Rheological consequences of microstructural transitions in colloidal crystals , 1994 .