A Novel Adaptive Possibilistic Clustering Algorithm

In this paper, a novel possibilistic c-means clustering algorithm, called adaptive possibilistic c-means, is presented. Its main feature is that its parameters, after their initialization, are properly adapted during its execution. Provided that the algorithm starts with a reasonable overestimate of the number of physical clusters formed by the data, it is capable, in principle, to unravel them (a long-standing issue in the clustering literature). This is due to the fully adaptive nature of the proposed algorithm that enables the removal of the clusters that gradually become obsolete. In addition, the adaptation of all its parameters increases the flexibility of the algorithm in following the variations in the formation of the clusters that occur from iteration to iteration. Theoretical results that are indicative of the convergence behavior of the algorithm are also provided. Finally, extensive simulation results on both synthetic and real data highlight the effectiveness of the proposed algorithm.

[1]  Jian Yu,et al.  Alpha-Cut Implemented Fuzzy Clustering Algorithms and Switching Regressions , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[2]  James M. Keller,et al.  A possibilistic approach to clustering , 1993, IEEE Trans. Fuzzy Syst..

[3]  James C. Bezdek,et al.  A Convergence Theorem for the Fuzzy ISODATA Clustering Algorithms , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  James M. Keller,et al.  The possibilistic C-means algorithm: insights and recommendations , 1996, IEEE Trans. Fuzzy Syst..

[5]  Chuleerat Jaruskulchai,et al.  Possibilistic Exponential Fuzzy Clustering , 2013, Journal of Computer Science and Technology.

[6]  Korris Fu-Lai Chung,et al.  An enhanced possibilistic C-Means clustering algorithm EPCM , 2008, Soft Comput..

[7]  R. Kruse,et al.  An extension to possibilistic fuzzy cluster analysis , 2004, Fuzzy Sets Syst..

[8]  Michael R. Anderberg,et al.  Cluster Analysis for Applications , 1973 .

[9]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[10]  Gerardo Beni,et al.  A Validity Measure for Fuzzy Clustering , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Miin-Shen Yang,et al.  A similarity-based robust clustering method , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Miin-Shen Yang,et al.  A Robust Automatic Merging Possibilistic Clustering Method , 2011, IEEE Transactions on Fuzzy Systems.

[13]  Francesco Masulli,et al.  Soft transition from probabilistic to possibilistic fuzzy clustering , 2006, IEEE Transactions on Fuzzy Systems.

[14]  Kuo-Lung Wu,et al.  Unsupervised possibilistic clustering , 2006, Pattern Recognit..

[15]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[16]  Mauro Barni,et al.  Comments on "A possibilistic approach to clustering" , 1996, IEEE Trans. Fuzzy Syst..

[17]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[18]  James C. Bezdek,et al.  A mixed c-means clustering model , 1997, Proceedings of 6th International Fuzzy Systems Conference.

[19]  Konstantinos Koutroumbas,et al.  Adaptive possibilistic clustering , 2013, IEEE International Symposium on Signal Processing and Information Technology.

[20]  Brian Everitt,et al.  Cluster analysis , 1974 .

[21]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[22]  Nan Yang,et al.  On the convergence of some possibilistic clustering algorithms , 2013, Fuzzy Optim. Decis. Mak..

[23]  Konstantinos Koutroumbas,et al.  A layered sparse adaptive possibilistic approach for hyperspectral image clustering , 2014, 2014 IEEE Geoscience and Remote Sensing Symposium.

[24]  J. A. Hartigan,et al.  A k-means clustering algorithm , 1979 .

[25]  Jiang-She Zhang,et al.  Improved possibilistic C-means clustering algorithms , 2004, IEEE Trans. Fuzzy Syst..

[26]  B. Ripley,et al.  Pattern Recognition , 1968, Nature.

[27]  Zi Shu He,et al.  Similarity Measure based Robust Possibilistic C-means Clustering Algorithms , 2011 .

[28]  James M. Keller,et al.  A possibilistic fuzzy c-means clustering algorithm , 2005, IEEE Transactions on Fuzzy Systems.