Real Stability Testing

We give a strongly polynomial time algorithm which determines whether or not a bivariate polynomial is real stable. As a corollary, this implies an algorithm for testing whether a given linear transformation on univariate polynomials preserves real-rootedness. The proof exploits properties of hyperbolic polynomials to reduce real stability testing to testing nonnegativity of a finite number of polynomials on an interval.

[1]  Robin Pemantle,et al.  Hyperbolicity and stable polynomials in combinatorics and probability , 2012, 1210.3231.

[2]  L. Gårding An Inequality for Hyperbolic Polynomials , 1959 .

[3]  Par C. Sturm Mémoire sur la résolution des équations numériques , 2009 .

[4]  Didier Henrion,et al.  Detecting rigid convexity of bivariate polynomials , 2008, 0801.3592.

[5]  Pablo A. Parrilo,et al.  Computing sum of squares decompositions with rational coefficients , 2008 .

[6]  Nima Anari,et al.  Hyperbolic Polynomials , Interlacers , and Sums of Squares , 2015 .

[7]  D. Spielman,et al.  Interlacing Families II: Mixed Characteristic Polynomials and the Kadison-Singer Problem , 2013, 1306.3969.

[8]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[9]  Nikhil Srivastava,et al.  Interlacing Families IV: Bipartite Ramanujan Graphs of All Sizes , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[10]  Mohit Singh,et al.  A Randomized Rounding Approach to the Traveling Salesman Problem , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[11]  Nikhil Srivastava,et al.  Interlacing Families I: Bipartite Ramanujan Graphs of All Degrees , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[12]  John H. Reif,et al.  The complexity of elementary algebra and geometry , 1984, STOC '84.

[13]  D. Wagner,et al.  Multivariate stable polynomials: theory and applications , 2009, 0911.3569.

[14]  T. Liggett,et al.  Negative dependence and the geometry of polynomials , 2007, 0707.2340.

[15]  J. Helton,et al.  Linear matrix inequality representation of sets , 2003, math/0306180.

[16]  S. Basu,et al.  Algorithms in real algebraic geometry , 2003 .

[17]  J. Borcea,et al.  The Lee-Yang and Pólya-Schur programs. I. Linear operators preserving stability , 2008, 0809.0401.

[18]  David Y. Y. Yun,et al.  On square-free decomposition algorithms , 1976, SYMSAC '76.

[19]  Waa Nuij A Note on Hyperbolic Polynomials. , 1968 .

[20]  Nima Anari,et al.  The Kadison-Singer Problem for Strongly Rayleigh Measures and Applications to Asymmetric TSP , 2014, ArXiv.