Highly stable Runge-Kutta methods for Volterra integral equations

We investigate the numerical stability of the class of Runge-Kutta methods for the solution of Volterra integral equations of the second kind. To this aim we introduce the definition of V"0(@a)-stability and a new technique to construct highly stable methods. V"0-stable methods of order three and four are provided.

[1]  Stability analysis of methods employing reducible rules for Volterra integral equations , 1983 .

[3]  J. Schur,et al.  Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind. , 1917 .

[4]  Rossana Vermiglio,et al.  Natural Continuous Extensions of Runge-Kutta Methods for Volterra Integral Equations of the Second-Kind and Their Applications , 1989 .

[5]  Christopher T. H. Baker,et al.  Convergence and Stability Analysis for Modified Runge—Kutta Methods in the Numerical Treatment of Second-Kind Volterra Integral Equations , 1981 .

[6]  R. K. Miller Almost periodic behavior of solutions of a nonlinear Volterra system , 1971 .

[7]  H. Brunner,et al.  The numerical solution of Volterra equations , 1988 .

[8]  C. Baker,et al.  Stability Regions in the Numerical Treatment of Volterra Integral Equations , 1978 .

[9]  P. Wolkenfelt Modified multilag methods for Volterra functional equations , 1983 .

[10]  Rossana Vermiglio,et al.  Stability Analysis of Runge-Kutta Methods for Volterra Integral Equations of the Second Kind , 1990 .

[11]  Hermann Brunner,et al.  The Numerical Solution of Nonlinear Volterra Integral Equations of the Second Kind by Collocation and Iterated Collocation Methods , 1987 .

[12]  Giuseppe Izzo,et al.  General linear methods for Volterra integral equations , 2010, J. Comput. Appl. Math..

[13]  J. Lambert Numerical Methods for Ordinary Differential Systems: The Initial Value Problem , 1991 .

[14]  Beatrice Paternoster,et al.  Two-step almost collocation methods for Volterra integral equations , 2008, Appl. Math. Comput..

[15]  R. Alexander Diagonally implicit runge-kutta methods for stiff odes , 1977 .

[16]  E.Simos Theodore,et al.  Recent Advances in Computational and Applied Mathematics , 2011 .

[17]  Hermann Brunner,et al.  Runge-Kutta theory for Volterra integral equations of the second kind , 1982 .

[18]  P. Houwen Convergence and stability results in Runge-Kutta type methods for Volterra integral equations of the second kind , 1980 .

[19]  P. Wolkenfelt On the Numerical Stability of Reducible Quadrature Methods for Second Kind Volterra Integral Equations , 1981 .

[20]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[21]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[22]  D. Conte,et al.  Advances on Collocation Based Numerical Methods for Ordinary Differential Equations and Volterra Integral Equations , 2011 .

[23]  J. Butcher Numerical methods for ordinary differential equations , 2003 .