Convergence analysis of finite element methods for H(curl; Ω)-elliptic interface problems

Abstract In this article we analyze a finite element method for solving H(div;Ω)-elliptic interface problems in general three-dimensional Lipschitz domains with smooth material interfaces. The continuous problems are discretized by means of lowest order H(div;Ω)-conforming finite elements of the first family (Raviart–Thomas or Nédélec face elements) on a family of unstructured oriented tetrahedral meshes. These resolve the smooth interface in the sense of sufficient approximation in terms of a parameter δ that quantifies the mismatch between the smooth interface and the finite element mesh. Optimal error estimates in the H(div;Ω)-norms are obtained for the first time. The analysis is based on a so-called δ-strip argument, a new extension theorem for H 1(div)-functions across smooth interfaces, a novel non-standard interfaceaware interpolation operator, and a perturbation argument for degrees of freedom in H(div;Ω)-conforming finite elements. Numerical tests are presented to verify the theoretical predictions and confirm the optimal order convergence of the numerical solution.

[1]  Per-Olof Persson,et al.  A Simple Mesh Generator in MATLAB , 2004, SIAM Rev..

[2]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[3]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[4]  Jun Zou,et al.  A convergence theory of multilevel additive Schwarz methods on unstructured meshes , 1996, Numerical Algorithms.

[5]  T. Manteuffel,et al.  FIRST-ORDER SYSTEM LEAST SQUARES FOR SECOND-ORDER PARTIAL DIFFERENTIAL EQUATIONS : PART II , 1994 .

[6]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[7]  R. Hiptmair Finite elements in computational electromagnetism , 2002, Acta Numerica.

[8]  Christian Wieners,et al.  Optimal a priori estimates for interface problems , 2003, Numerische Mathematik.

[9]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[10]  Panayot S. Vassilevski,et al.  Preconditioning Mixed Finite Element Saddle‐point Elliptic Problems , 1996 .

[11]  R. Hiptmair,et al.  MULTIGRID METHOD FORH(DIV) IN THREE DIMENSIONS , 1997 .

[12]  Jinchao Xu,et al.  Nodal Auxiliary Space Preconditioning in H(curl) and H(div) Spaces , 2007, SIAM J. Numer. Anal..

[13]  Jens Markus Melenk,et al.  Optimal a priori estimates for higher order finite elements for elliptic interface problems , 2010 .

[14]  Jun Zou,et al.  A mortar element method for elliptic problems with discontinuous coefficients , 2002 .

[15]  Ralf Hiptmair,et al.  Convergence analysis of finite element methods for H(curl; Ω)-elliptic interface problems , 2012, Numerische Mathematik.

[16]  Ronald H. W. Hoppe,et al.  Finite element methods for Maxwell's equations , 2005, Math. Comput..

[17]  Ronald Fedkiw,et al.  The immersed interface method. Numerical solutions of PDEs involving interfaces and irregular domains , 2007, Math. Comput..

[18]  P. Hansbo,et al.  An unfitted finite element method, based on Nitsche's method, for elliptic interface problems , 2002 .

[19]  R. S. Falk,et al.  PRECONDITIONING IN H (div) AND APPLICATIONS , 1997 .

[20]  C. M. Elliott,et al.  Fitted and Unfitted Finite-Element Methods for Elliptic Equations with Smooth Interfaces , 1987 .

[21]  James H. Bramble,et al.  A finite element method for interface problems in domains with smooth boundaries and interfaces , 1996, Adv. Comput. Math..

[22]  F. Thomasset Finite element methods for Navier-Stokes equations , 1980 .

[23]  J. Zou,et al.  Finite element methods and their convergence for elliptic and parabolic interface problems , 1998 .