Universal quantum computation with electronic qubits in decoherence-free subspace

We investigate how to carry out universal quantum computation deterministically with free electrons in decoherence-free subspace by using polarizing beam splitters, charge detectors, and single-spin rotations. Quantum information in our case is encoded in spin degrees of freedom of the electron-pairs which construct a decoherence-free subspace. We design building blocks for two noncommutable single-logic-qubit gates and a logic controlled phase gate, based on which a universal and scalable quantum information processing robust to dephasing is available in a deterministic way.

[1]  Yun-Feng Xiao,et al.  Universal quantum computation in decoherence-free subspace with neutral atoms. , 2006, Physical review letters.

[2]  Yamamoto,et al.  Hanbury brown and twiss-type experiment with electrons , 1999, Science.

[3]  L. Vandersypen,et al.  NMR techniques for quantum control and computation , 2004, quant-ph/0404064.

[4]  Guang-Can Guo,et al.  Preserving Coherence in Quantum Computation by Pairing Quantum Bits , 1997 .

[5]  C. Buizert,et al.  Driven coherent oscillations of a single electron spin in a quantum dot , 2006, Nature.

[6]  D A Lidar,et al.  Holonomic quantum computation in decoherence-free subspaces. , 2005, Physical review letters.

[7]  X. L. Zhang,et al.  Cluster-state preparation and multipartite entanglement analyzer with fermions , 2005, quant-ph/0512067.

[8]  P. Zanardi,et al.  Noiseless Quantum Codes , 1997, quant-ph/9705044.

[9]  Jacob M. Taylor,et al.  Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots , 2005, Science.

[10]  Daniel A Lidar,et al.  Comprehensive encoding and decoupling solution to problems of decoherence and design in solid-state quantum computing. , 2002, Physical review letters.

[11]  L. Vandersypen,et al.  Excited-state spectroscopy on a nearly closed quantum dot via charge detection , 2003, cond-mat/0312222.

[12]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[13]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[14]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[15]  Daniel Loss,et al.  Fermionic Bell-State Analyzer for Spin Qubits , 2005, Science.

[16]  K. B. Whaley,et al.  Theory of decoherence-free fault-tolerant universal quantum computation , 2000, quant-ph/0004064.

[17]  D. A. Lidar,et al.  Encoded recoupling and decoupling: An alternative to quantum error-correcting codes applied to trapped-ion quantum computation , 2003 .

[18]  Artur Ekert,et al.  Quantum computers and dissipation , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[19]  Jacob M. Taylor,et al.  Triplet–singlet spin relaxation via nuclei in a double quantum dot , 2005, Nature.

[20]  V. Umansky,et al.  Dephasing in electron interference by a ‘which-path’ detector , 1998, Nature.

[21]  C. Beenakker,et al.  Charge detection enables free-electron quantum computation. , 2004, Physical Review Letters.

[22]  Wei-Min Zhang,et al.  Universal quantum computation with quantum-dot cellular automata in decoherence-free subspace , 2008, Quantum Inf. Comput..

[23]  Holland,et al.  The fermionic hanbury brown and twiss experiment , 1999, Science.

[24]  S. Lyon,et al.  Picosecond time-resolved two-dimensional ballistic electron transport. , 2003, Physical review letters.

[25]  Daniel A. Lidar,et al.  Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.

[26]  D A Lidar,et al.  Efficient universal leakage elimination for physical and encoded qubits. , 2002, Physical review letters.

[27]  Daniel A. Lidar,et al.  Decoherence-Free Subspaces for Multiple-Qubit Errors: (II) Universal, Fault-Tolerant Quantum Computation , 2001 .

[28]  C. H. Oh,et al.  Electronic entanglement purification scheme enhanced by charge detections , 2005 .

[29]  S. A. Lyon,et al.  Spin-based quantum computing using electrons on liquid helium , 2003, cond-mat/0301581.