Universal quantum computation with electronic qubits in decoherence-free subspace
暂无分享,去创建一个
Xiaolong Zhang | Mang Feng | Ke-Lin Gao | K. Gao | M. Feng | Xiaolong Zhang
[1] Yun-Feng Xiao,et al. Universal quantum computation in decoherence-free subspace with neutral atoms. , 2006, Physical review letters.
[2] Yamamoto,et al. Hanbury brown and twiss-type experiment with electrons , 1999, Science.
[3] L. Vandersypen,et al. NMR techniques for quantum control and computation , 2004, quant-ph/0404064.
[4] Guang-Can Guo,et al. Preserving Coherence in Quantum Computation by Pairing Quantum Bits , 1997 .
[5] C. Buizert,et al. Driven coherent oscillations of a single electron spin in a quantum dot , 2006, Nature.
[6] D A Lidar,et al. Holonomic quantum computation in decoherence-free subspaces. , 2005, Physical review letters.
[7] X. L. Zhang,et al. Cluster-state preparation and multipartite entanglement analyzer with fermions , 2005, quant-ph/0512067.
[8] P. Zanardi,et al. Noiseless Quantum Codes , 1997, quant-ph/9705044.
[9] Jacob M. Taylor,et al. Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots , 2005, Science.
[10] Daniel A Lidar,et al. Comprehensive encoding and decoupling solution to problems of decoherence and design in solid-state quantum computing. , 2002, Physical review letters.
[11] L. Vandersypen,et al. Excited-state spectroscopy on a nearly closed quantum dot via charge detection , 2003, cond-mat/0312222.
[12] R. Stephenson. A and V , 1962, The British journal of ophthalmology.
[13] E. Knill,et al. A scheme for efficient quantum computation with linear optics , 2001, Nature.
[14] D. DiVincenzo,et al. Quantum computation with quantum dots , 1997, cond-mat/9701055.
[15] Daniel Loss,et al. Fermionic Bell-State Analyzer for Spin Qubits , 2005, Science.
[16] K. B. Whaley,et al. Theory of decoherence-free fault-tolerant universal quantum computation , 2000, quant-ph/0004064.
[17] D. A. Lidar,et al. Encoded recoupling and decoupling: An alternative to quantum error-correcting codes applied to trapped-ion quantum computation , 2003 .
[18] Artur Ekert,et al. Quantum computers and dissipation , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[19] Jacob M. Taylor,et al. Triplet–singlet spin relaxation via nuclei in a double quantum dot , 2005, Nature.
[20] V. Umansky,et al. Dephasing in electron interference by a ‘which-path’ detector , 1998, Nature.
[21] C. Beenakker,et al. Charge detection enables free-electron quantum computation. , 2004, Physical Review Letters.
[22] Wei-Min Zhang,et al. Universal quantum computation with quantum-dot cellular automata in decoherence-free subspace , 2008, Quantum Inf. Comput..
[23] Holland,et al. The fermionic hanbury brown and twiss experiment , 1999, Science.
[24] S. Lyon,et al. Picosecond time-resolved two-dimensional ballistic electron transport. , 2003, Physical review letters.
[25] Daniel A. Lidar,et al. Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.
[26] D A Lidar,et al. Efficient universal leakage elimination for physical and encoded qubits. , 2002, Physical review letters.
[27] Daniel A. Lidar,et al. Decoherence-Free Subspaces for Multiple-Qubit Errors: (II) Universal, Fault-Tolerant Quantum Computation , 2001 .
[28] C. H. Oh,et al. Electronic entanglement purification scheme enhanced by charge detections , 2005 .
[29] S. A. Lyon,et al. Spin-based quantum computing using electrons on liquid helium , 2003, cond-mat/0301581.