Remark on small analytic solutions to the Schr̈odinger equation with cubic convolution

We consider the Cauchy problem for the Schrödinger equation with cubic convolution in space dimension d ≥ 3. We assume that the interaction potentialV belongs to the weakL space with2 ≤ σ < d. We prove that if the initial data φ is sufficiently small in the sense of the Sobolev space Hσ/2−1 and either φ or its Fourier transform Fφ satisfies a real-analytic condition, then the solutionu(t) is also real-analytic for anyt ̸= 0. We also prove that ifφ and V satisfy some strong condition, then u(t) can be extended to an entire function onC for any t ̸= 0. We remark that no Hσ/2−1 smallness condition is imposed on first and higher order partial derivatives of φ and Fφ.

[1]  Hironobu Sasaki Small analytic solutions to the Hartree equation , 2016 .

[2]  T. Ozawa,et al.  Analytic smoothing effect for nonlinear Schrödinger equation with quintic nonlinearity , 2014 .

[3]  T. Ozawa,et al.  Analytic smoothing effect for nonlinear Schrödinger equation in two space dimensions , 2014 .

[4]  E. Ríos The Nonlinear Schr\"odinger Equation and Conservation Laws , 2013, 1307.5957.

[5]  T. Ozawa,et al.  Analytic smoothing effect for global solutions to nonlinear Schrödinger equations , 2010 .

[6]  G. Ponce,et al.  Introduction to Nonlinear Dispersive Equations , 2009 .

[7]  T. Ozawa,et al.  Remarks on analytic smoothing effect for the Schrödinger equation , 2009 .

[8]  H. Chihara Gain of analyticity for semilinear Schrödinger equations , 2007, 0708.2154.

[9]  J. Bona,et al.  Global solutions of the derivative Schrödinger equation in a class of functions analytic in a strip , 2006 .

[10]  K. Nakamitsu Analytic Finite Energy Solutions of the Nonlinear Schrödinger Equation , 2005 .

[11]  T. Cazenave Semilinear Schrodinger Equations , 2003 .

[12]  K. Nakanishi,et al.  Remarks on scattering for nonlinear Schrödinger equations , 2002 .

[13]  H. Takuwa Analytic smoothing effects for a class of dispersive equations , 2002 .

[14]  N. Hayashi,et al.  ANALYTIC SMOOTHING EFFECTS FOR SOME DERIVATIVE NONLINEAR SCHRODINGER EQUATIONS , 2000 .

[15]  L. Robbiano,et al.  Effect régularisant microlocal analytique pour l'équation de Schrödinger le cas des données oscillantes , 2000 .

[16]  C. Zuily,et al.  Microlocal analytic smoothing effect for the Schrodinger equation , 1999 .

[17]  N. Hayashi,et al.  Analyticity in Time and Smoothing Effect of Solutions to Nonlinear Schrödinger Equations , 1997 .

[18]  Keiichi Kato,et al.  Gevrey regularizing effect for nonlinear Schrödinger equations , 1996 .

[19]  S. Saitoh,et al.  Analyticity and global existence of small solutions to some nonlinear Schrödinger equations , 1990 .

[20]  Tosio Kato,et al.  Nonlinear Evolution Equations and Analyticity. I , 1986 .

[21]  J. Simon,et al.  Wave operators and analytic solutions for systems of non-linear Klein-Gordon equations and of non-linear Schrödinger equations , 1985 .

[22]  Robert S. Strichartz,et al.  Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations , 1977 .

[23]  Richard O’Neil,et al.  Convolution operators and $L(p,q)$ spaces , 1963 .

[24]  T. Ozawa,et al.  ANALYTIC SMOOTHING EFFECT FOR A SYSTEM OF NONLINEAR SCHR ¨ ODINGER EQUATIONS , 2013 .

[25]  Y. Osaka ANALYTIC SMOOTHING EFFECT FOR SOLUTIONS TO SCHR ¨ ODINGER EQUATIONS WITH NONLINEARITY OF INTEGRAL TYPE 1 , 2005 .

[26]  Saburou Saitoh,et al.  Analyticity and smoothing effect for the Schrödinger equation , 1990 .

[27]  K. Mochizuki On small data scattering with cubic convolution nonlinearity , 1989 .