Iteration 2-theories

The axioms of iteration 2-theories capture, up to isomorphism, the equational properties of iteration in conjunction with horizontal and vertical composition in all algebraically complete categories. We give a concrete representation of the free iteration 2-theory generated by a 2-signature.

[1]  G. Lallement Semigroups and combinatorial applications , 1979 .

[2]  Z. Ésik,et al.  Iteration Theories: The Equational Logic of Iterative Processes , 1993 .

[3]  David Park,et al.  Concurrency and Automata on Infinite Sequences , 1981, Theoretical Computer Science.

[4]  Roland Carl Backhouse,et al.  Categorical Fixed Point Calculus , 1995, Category Theory and Computer Science.

[5]  F. W. Lawvere,et al.  FUNCTORIAL SEMANTICS OF ALGEBRAIC THEORIES. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[6]  J. Lambek A fixpoint theorem for complete categories , 1968 .

[7]  P. J. Freyd Applications of Categories in Computer Science: Remarks on algebraically compact categories , 1992 .

[8]  Joseph A. Goguen,et al.  Rational algebraic theories and fixed-point solutions , 1976, 17th Annual Symposium on Foundations of Computer Science (sfcs 1976).

[9]  R. Street,et al.  Review of the elements of 2-categories , 1974 .

[10]  P. Freyd Algebraically complete categories , 1991 .

[11]  John Power An Abstract Formulation for Rewrite Systems , 1989, Category Theory and Computer Science.

[12]  Stephen L. Bloom,et al.  Solutions of the Iteration Equation and Extensions of the Scalar Iteration Operation , 1980, SIAM J. Comput..

[13]  Susanna Ginali,et al.  Regular Trees and the Free Iterative Theory , 1979, J. Comput. Syst. Sci..

[14]  Stephen L. Bloom,et al.  On the Algebraic Atructure of Rooted Trees , 1978, J. Comput. Syst. Sci..

[15]  Zoltán Ésik,et al.  Some Quasi-Varieties of Iteration Theories , 1993, MFPS.

[16]  Stephen L. Bloom,et al.  Vector Iteration in Pointed Iterative Theories , 1980, SIAM J. Comput..

[17]  José Meseguer,et al.  Conditioned Rewriting Logic as a United Model of Concurrency , 1992, Theor. Comput. Sci..

[18]  Fabio Gadducci,et al.  CPO Models for Infinite Term Rewriting , 1995, AMAST.

[19]  Zoltán Ésik,et al.  Completeness of Park Induction , 1997, Theor. Comput. Sci..

[20]  C. C. Elgot,et al.  Vector Iteration in Pointed Iterative Theories , 1980 .

[21]  Zoltán Ésik,et al.  Equational Properties of Iteration in Algebraically Complete Categories , 1998, Theor. Comput. Sci..

[22]  Zoltán Ésik,et al.  Iteration 2-Theories: Extended Abstract , 1997, AMAST.

[23]  Zoltán Ésik,et al.  Independence of the Equational Axioms for Iteration Theories , 1988, J. Comput. Syst. Sci..

[24]  Zoltán Ésik,et al.  Equational Properties of Iteration in Algebraically Complete Categories , 1996, Theor. Comput. Sci..

[25]  C. C. Elgot,et al.  On the algebraic structure of rooted trees , 1978 .

[26]  Fabio Gadducci,et al.  Rational Term Rewriting , 1998, FoSSaCS.

[27]  Zoltán Ésik,et al.  Group Axioms for Iteration , 1999, Inf. Comput..

[28]  Alfred V. Aho,et al.  The Theory of Parsing, Translation, and Compiling , 1972 .