Optimal spatiotemporal reduced order modeling for nonlinear dynamical systems

Many physical phenomena governed by nonlinear dynamics possess motions that occur on a wide range of timescales. Numerical solutions for such problems often require a large number of variables to achieve acceptable accuracy. When an insucient resolution is used to evolve a solution, an irreversible loss of information occurs, which can lead to substantial errors. Presented here is a novel method for optimal temporal reduced order modeling (OPTROM), which can be used to enhance the fidelity of any time domain solution technique. Statistical information about the unresolved variables, in the form of conditional expectations, is used to more accurately predict the evolution of the resolved variables. To demonstrate the OPTROM technique, harmonic balance solutions for a Dung oscillator are investigated. The need for, and ecacy of, the technique is greatest when solutions are obtained with a low resolution.

[1]  H. Grabert,et al.  Projection Operator Techniques in Nonequilibrium Statistical Mechanics , 1982 .

[2]  M. Lesieur,et al.  New Trends in Large-Eddy Simulations of Turbulence , 1996 .

[3]  Steven A. Orszag,et al.  On the Elimination of Aliasing in Finite-Difference Schemes by Filtering High-Wavenumber Components , 1971 .

[4]  J. Boyd Chebyshev & Fourier Spectral Methods , 1989 .

[5]  Leo P. Kadanoff,et al.  Scaling and universality in statistical physics , 1990 .

[6]  Jeffrey P. Thomas,et al.  Computation of Unsteady Nonlinear Flows in Cascades Using a Harmonic Balance Technique , 2002 .

[7]  R. Zwanzig Nonlinear generalized Langevin equations , 1973 .

[8]  Harry Nyquist Certain Topics in Telegraph Transmission Theory , 1928 .

[9]  A. N. Kolmogorov Equations of turbulent motion in an incompressible fluid , 1941 .

[10]  Allen Labryer,et al.  A harmonic balance approach for large-scale problems in nonlinear structural dynamics , 2010 .

[11]  Yassin A. Hassan,et al.  Approximation of turbulent conditional averages by stochastic estimation , 1989 .

[12]  P. Moin,et al.  DIRECT NUMERICAL SIMULATION: A Tool in Turbulence Research , 1998 .

[13]  Jeffrey P. Thomas,et al.  Nonlinear Inviscid Aerodynamic Effects on Transonic Divergence, Flutter, and Limit-Cycle Oscillations , 2001 .

[14]  Qiang Du,et al.  Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..

[15]  Robert D. Moser,et al.  Finite-volume optimal large-eddy simulation of isotropic turbulence , 2004 .

[16]  Earl H. Dowell,et al.  A comparison of classical and high dimensional harmonic balance approaches for a Duffing oscillator , 2006, J. Comput. Phys..

[17]  Eugen Fick,et al.  The quantum statistics of dynamic processes , 1990 .

[18]  Richard W. Hamming,et al.  Numerical Methods for Scientists and Engineers , 1963 .

[19]  R. Moser,et al.  Optimal LES formulations for isotropic turbulence , 1999, Journal of Fluid Mechanics.

[20]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[21]  Grigorios Dimitriadis,et al.  Continuation of Higher-Order Harmonic Balance Solutions for Nonlinear Aeroelastic Systems , 2008 .

[22]  Allen Labryer,et al.  High dimensional harmonic balance dealiasing techniques for a Duffing oscillator , 2009 .

[23]  A. Stuart,et al.  Extracting macroscopic dynamics: model problems and algorithms , 2004 .

[24]  Sture Nordholm,et al.  A systematic derivation of exact generalized Brownian motion theory , 1975 .

[25]  Ronald Adrian,et al.  Stochastic Estimation of Sub-Grid Scale Motions , 1990 .

[26]  Richard H. Pletcher,et al.  Computational Fluid Mechanics and Heat Transfer , 1984 .

[27]  P. Orkwis,et al.  Adaptive harmonic balance method for nonlinear time-periodic flows , 2004 .

[28]  A. Kolmogorov The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[29]  P. Holmes,et al.  A nonlinear oscillator with a strange attractor , 1979, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[30]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[31]  H. Mori Transport, Collective Motion, and Brownian Motion , 1965 .

[32]  A J Chorin,et al.  Optimal prediction and the Mori-Zwanzig representation of irreversible processes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[33]  P. Holmes,et al.  The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows , 1993 .