Optimal spatiotemporal reduced order modeling for nonlinear dynamical systems
暂无分享,去创建一个
[1] H. Grabert,et al. Projection Operator Techniques in Nonequilibrium Statistical Mechanics , 1982 .
[2] M. Lesieur,et al. New Trends in Large-Eddy Simulations of Turbulence , 1996 .
[3] Steven A. Orszag,et al. On the Elimination of Aliasing in Finite-Difference Schemes by Filtering High-Wavenumber Components , 1971 .
[4] J. Boyd. Chebyshev & Fourier Spectral Methods , 1989 .
[5] Leo P. Kadanoff,et al. Scaling and universality in statistical physics , 1990 .
[6] Jeffrey P. Thomas,et al. Computation of Unsteady Nonlinear Flows in Cascades Using a Harmonic Balance Technique , 2002 .
[7] R. Zwanzig. Nonlinear generalized Langevin equations , 1973 .
[8] Harry Nyquist. Certain Topics in Telegraph Transmission Theory , 1928 .
[9] A. N. Kolmogorov. Equations of turbulent motion in an incompressible fluid , 1941 .
[10] Allen Labryer,et al. A harmonic balance approach for large-scale problems in nonlinear structural dynamics , 2010 .
[11] Yassin A. Hassan,et al. Approximation of turbulent conditional averages by stochastic estimation , 1989 .
[12] P. Moin,et al. DIRECT NUMERICAL SIMULATION: A Tool in Turbulence Research , 1998 .
[13] Jeffrey P. Thomas,et al. Nonlinear Inviscid Aerodynamic Effects on Transonic Divergence, Flutter, and Limit-Cycle Oscillations , 2001 .
[14] Qiang Du,et al. Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..
[15] Robert D. Moser,et al. Finite-volume optimal large-eddy simulation of isotropic turbulence , 2004 .
[16] Earl H. Dowell,et al. A comparison of classical and high dimensional harmonic balance approaches for a Duffing oscillator , 2006, J. Comput. Phys..
[17] Eugen Fick,et al. The quantum statistics of dynamic processes , 1990 .
[18] Richard W. Hamming,et al. Numerical Methods for Scientists and Engineers , 1963 .
[19] R. Moser,et al. Optimal LES formulations for isotropic turbulence , 1999, Journal of Fluid Mechanics.
[20] S. Lele. Compact finite difference schemes with spectral-like resolution , 1992 .
[21] Grigorios Dimitriadis,et al. Continuation of Higher-Order Harmonic Balance Solutions for Nonlinear Aeroelastic Systems , 2008 .
[22] Allen Labryer,et al. High dimensional harmonic balance dealiasing techniques for a Duffing oscillator , 2009 .
[23] A. Stuart,et al. Extracting macroscopic dynamics: model problems and algorithms , 2004 .
[24] Sture Nordholm,et al. A systematic derivation of exact generalized Brownian motion theory , 1975 .
[25] Ronald Adrian,et al. Stochastic Estimation of Sub-Grid Scale Motions , 1990 .
[26] Richard H. Pletcher,et al. Computational Fluid Mechanics and Heat Transfer , 1984 .
[27] P. Orkwis,et al. Adaptive harmonic balance method for nonlinear time-periodic flows , 2004 .
[28] A. Kolmogorov. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[29] P. Holmes,et al. A nonlinear oscillator with a strange attractor , 1979, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[30] Wing Kam Liu,et al. Nonlinear Finite Elements for Continua and Structures , 2000 .
[31] H. Mori. Transport, Collective Motion, and Brownian Motion , 1965 .
[32] A J Chorin,et al. Optimal prediction and the Mori-Zwanzig representation of irreversible processes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.
[33] P. Holmes,et al. The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows , 1993 .