Analyzing Twitter Data

So far we have discussed the collection and management of a large set of Tweets. It is time to put these Tweets to work to gain information about the data we have collected. This chapter focuses on two key aspects of Twitter data for data analysis: networks and text.

[1]  Ana-Maria Popescu,et al.  A Machine Learning Approach to Twitter User Classification , 2011, ICWSM.

[2]  David Yarowsky,et al.  Broadly Improving User Classification via Communication-Based Name and Location Clustering on Twitter , 2013, NAACL.

[3]  Ana-Maria Popescu,et al.  Democrats, republicans and starbucks afficionados: user classification in twitter , 2011, KDD.

[4]  Isabell M. Welpe,et al.  Predicting Elections with Twitter: What 140 Characters Reveal about Political Sentiment , 2010, ICWSM.

[5]  Oren Etzioni,et al.  Named Entity Recognition in Tweets: An Experimental Study , 2011, EMNLP.

[6]  Jeffrey Nichols,et al.  Where Is This Tweet From? Inferring Home Locations of Twitter Users , 2012, ICWSM.

[7]  Reza Zafarani,et al.  Social Media Mining: An Introduction , 2014 .

[8]  Kalina Bontcheva,et al.  Where's @wally?: a classification approach to geolocating users based on their social ties , 2013, HT.

[9]  Yutaka Matsuo,et al.  Earthquake shakes Twitter users: real-time event detection by social sensors , 2010, WWW '10.

[10]  Jason Baldridge,et al.  Twitter Polarity Classification with Label Propagation over Lexical Links and the Follower Graph , 2011, ULNLP@EMNLP.

[11]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[12]  Huan Liu,et al.  A behavior analytics approach to identifying tweets from crisis regions , 2014, HT.

[13]  Daniel Gayo-Avello,et al.  All liaisons are dangerous when all your friends are known to us , 2010, HT '11.

[14]  Kyumin Lee,et al.  You are where you tweet: a content-based approach to geo-locating twitter users , 2010, CIKM.

[15]  Lillian Lee,et al.  Opinion Mining and Sentiment Analysis , 2008, Found. Trends Inf. Retr..

[16]  Tat-Seng Chua,et al.  Mining slang and urban opinion words and phrases from cQA services: an optimization approach , 2012, WSDM '12.

[17]  Noah A. Smith,et al.  Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science , 2014 .

[18]  Jeannie A. Stamberger,et al.  Tweak the tweet: Leveraging microblogging proliferation with a prescriptive syntax to support citizen reporting , 2010, ISCRAM.

[19]  Huan Liu,et al.  Is the Sample Good Enough? Comparing Data from Twitter's Streaming API with Twitter's Firehose , 2013, ICWSM.

[20]  Huan Liu,et al.  Unsupervised sentiment analysis with emotional signals , 2013, WWW.

[21]  Sune Lehmann,et al.  Understanding the Demographics of Twitter Users , 2011, ICWSM.

[22]  Fred Morstatter,et al.  Finding Eyewitness Tweets During Crises , 2014, LTCSS@ACL.

[23]  Ben Shneiderman,et al.  Analyzing Social Media Networks with NodeXL: Insights from a Connected World , 2010 .

[24]  Johan Bollen,et al.  Modeling Public Mood and Emotion: Twitter Sentiment and Socio-Economic Phenomena , 2009, ICWSM.

[25]  Ed H. Chi,et al.  Tweets from Justin Bieber's heart: the dynamics of the location field in user profiles , 2011, CHI.

[26]  Ulrik Brandes,et al.  Studying Social Networks - A Guide to Empirical Research , 2013 .

[27]  Kalina Bontcheva,et al.  TwitIE: An Open-Source Information Extraction Pipeline for Microblog Text , 2013, RANLP.

[28]  Bu-Sung Lee,et al.  Event Detection in Twitter , 2011, ICWSM.

[29]  Ross Maciejewski,et al.  Understanding Twitter data with TweetXplorer , 2013, KDD.

[30]  Huan Liu,et al.  Twitter Data Analytics , 2013, SpringerBriefs in Computer Science.

[31]  L. Venkata Subramaniam,et al.  From Tweets to Events: Exploring a Scalable Solution for Twitter Streams , 2014, ArXiv.

[32]  Huan Liu,et al.  When is it biased?: assessing the representativeness of twitter's streaming API , 2014, WWW.

[33]  P. Srinivasan,et al.  Sentiment analysis within and across social media streams , 2012 .

[34]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[35]  Ravi Kumar,et al.  Pig latin: a not-so-foreign language for data processing , 2008, SIGMOD Conference.

[36]  Brendan T. O'Connor,et al.  Improved Part-of-Speech Tagging for Online Conversational Text with Word Clusters , 2013, NAACL.

[37]  Mohammad Ali Abbasi,et al.  TweetTracker: An Analysis Tool for Humanitarian and Disaster Relief , 2011, ICWSM.