Optimization of cutting parameters in multi-pass turning using artificial bee colony-based approach

Selection of cutting parameters in machining operations is an essential task to reduce cost of the products and increase quality. This paper presents an optimization approach based on artificial bee colony algorithm for optimal selection of cutting parameters in multi-pass turning operations. The objective is to find the optimized cutting parameters in the turning operations. A comparison of evolutionary-based optimization techniques to solve multi-pass turning optimization problems is presented. The results of the proposed approach for the case studies are compared with previously published results by using other optimization techniques in the literature.

[1]  D. Karaboga,et al.  On the performance of artificial bee colony (ABC) algorithm , 2008, Appl. Soft Comput..

[2]  Dervis Karaboga,et al.  A comprehensive survey: artificial bee colony (ABC) algorithm and applications , 2012, Artificial Intelligence Review.

[3]  Ali R. Yildiz,et al.  A new hybrid differential evolution algorithm for the selection of optimal machining parameters in milling operations , 2013, Appl. Soft Comput..

[4]  Ali R. Yildiz,et al.  A new hybrid particle swarm optimization approach for structural design optimization in the automotive industry , 2012 .

[5]  Ali R. Yildiz,et al.  An effective hybrid immune-hill climbing optimization approach for solving design and manufacturing optimization problems in industry , 2009 .

[6]  Ali R. Yildiz,et al.  A new hybrid artificial bee colony algorithm for robust optimal design and manufacturing , 2013, Appl. Soft Comput..

[7]  Ali R. Yildiz,et al.  Hybrid Taguchi-differential evolution algorithm for optimization of multi-pass turning operations , 2013, Appl. Soft Comput..

[8]  D. S. Ermer,et al.  Optimization of the Constrained Machining Economics Problem by Geometric Programming , 1971 .

[9]  Witold Pedrycz,et al.  Type-2 fuzzy neural networks with fuzzy clustering and differential evolution optimization , 2011, Inf. Sci..

[10]  Ali Rıza Yıldız,et al.  A novel particle swarm optimization approach for product design and manufacturing , 2008 .

[11]  Kazuhiro Saitou,et al.  Topology Synthesis of Multicomponent Structural Assemblies in Continuum Domains , 2011 .

[12]  Ali R. Yildiz,et al.  A comparative study of population-based optimization algorithms for turning operations , 2012, Inf. Sci..

[13]  Kiran Solanki,et al.  Multi-objective optimization of vehicle crashworthiness using a new particle swarm based approach , 2012 .

[14]  A R Yildiz,et al.  Hybrid enhanced genetic algorithm to select optimal machining parameters in turning operation , 2006 .

[15]  Du-Ming Tsai,et al.  A simulated annealing approach for optimization of multi-pass turning operations , 1996 .

[16]  Dervis Karaboga,et al.  Artificial Bee Colony (ABC) Optimization Algorithm for Solving Constrained Optimization Problems , 2007, IFSA.

[17]  Ali Riza Yildiz,et al.  A new design optimization framework based on immune algorithm and Taguchi's method , 2009, Comput. Ind..

[18]  Mehmet Fatih Tasgetiren,et al.  A discrete artificial bee colony algorithm for the total flowtime minimization in permutation flow shops , 2011, Inf. Sci..

[19]  G. K. Lal,et al.  Determination of optimal subdivision of depth of cut in multipass turning with constraints , 1995 .

[20]  Dervis Karaboga,et al.  A modified Artificial Bee Colony algorithm for real-parameter optimization , 2012, Inf. Sci..

[21]  G. Boothroyd,et al.  Maximum Rate of Profit Criteria in Machining , 1976 .

[22]  Ali R. Yildiz,et al.  Hybrid Taguchi-Harmony Search Algorithm for Solving Engineering Optimization Problems , 2008 .

[23]  Ali R. Yildiz,et al.  Cuckoo search algorithm for the selection of optimal machining parameters in milling operations , 2012, The International Journal of Advanced Manufacturing Technology.

[24]  Yoke San Wong,et al.  Optimization of multi-pass milling using parallel genetic algorithm and parallel genetic simulated annealing , 2005 .

[25]  Dervis Karaboga,et al.  A novel clustering approach: Artificial Bee Colony (ABC) algorithm , 2011, Appl. Soft Comput..

[26]  Faiz A. Al-Khayyal,et al.  Machine parameter selection for turning with constraints: an analytical approach based on geometric programming , 1991 .

[27]  Ali R. Yildiz,et al.  Hybrid immune-simulated annealing algorithm for optimal design and manufacturing , 2009 .

[28]  Dervis Karaboga,et al.  AN IDEA BASED ON HONEY BEE SWARM FOR NUMERICAL OPTIMIZATION , 2005 .

[29]  R. C. Creese,et al.  A generalized multi-pass machining model for machining parameter selection in turning , 1995 .

[30]  Ali Rıza Yıldız,et al.  Structural Damage Detection Using Modal Parameters and Particle Swarm Optimization , 2012 .

[31]  Junjie Li,et al.  Rosenbrock artificial bee colony algorithm for accurate global optimization of numerical functions , 2011, Inf. Sci..

[32]  Madhan Shridhar Phadke,et al.  Quality Engineering Using Robust Design , 1989 .

[33]  Kazuaki Iwata,et al.  Optimization of Cutting Conditions for Multi-Pass Operations Considering Probabilistic Nature in Machining Processes , 1977 .

[34]  Katsundo Hitomi,et al.  A STUDY OF ECONOMICAL MACHINING: AN ANALYSIS OF THE MAXIMUM-PROFIT CUTTING SPEED , 1964 .

[35]  Yung C. Shin,et al.  Optimization of machining conditions with practical constraints , 1992 .

[36]  Singiresu S Rao,et al.  Determination of Optimum Machining Conditions—Deterministic and Probabilistic Approaches , 1976 .

[37]  B. K. Lambert,et al.  Optimization of multi-pass machining operations , 1978 .

[38]  Dervis Karaboga,et al.  A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm , 2007, J. Glob. Optim..

[39]  Ali R. Yildiz,et al.  A novel hybrid immune algorithm for global optimization in design and manufacturing , 2009 .

[40]  Mu-Chen Chen,et al.  Optimizing machining economics models of turning operations using the scatter search approach , 2004 .

[41]  Kalpakjian Schmid,et al.  Manufacturing Engineering & Technology , 2013 .

[42]  Ali R. Yildiz,et al.  Comparison of evolutionary-based optimization algorithms for structural design optimization , 2013, Eng. Appl. Artif. Intell..

[43]  D. S. Ermer,et al.  Optimization of Multipass Turning With Constraints , 1981 .

[44]  Mu-Chen Chen,et al.  Optimization of multipass turning operations with genetic algorithms: A note , 2003 .

[45]  İsmail Durgun,et al.  Structural Design Optimization of Vehicle Components Using Cuckoo Search Algorithm , 2012 .