The Big and the Small: Challenges of Imaging the Brain’s Circuits

The relation between the structure of the nervous system and its function is more poorly understood than the relation between structure and function in any other organ system. We explore why bridging the structure-function divide is uniquely difficult in the brain. These difficulties also explain the thrust behind the enormous amount of innovation centered on microscopy in neuroscience. We highlight some recent progress and the challenges that remain.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  Leighton Sb SEM images of block faces, cut by a miniature microtome within the SEM - a technical note. , 1981 .

[3]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[4]  W. Denk,et al.  Two-photon laser scanning fluorescence microscopy. , 1990, Science.

[5]  S. Hell,et al.  Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. , 1994, Optics letters.

[6]  R. Tsien,et al.  Fluorescent indicators for Ca2+based on green fluorescent proteins and calmodulin , 1997, Nature.

[7]  D. Kleinfeld,et al.  In vivo dendritic calcium dynamics in neocortical pyramidal neurons , 1997, Nature.

[8]  D. Wilkin,et al.  Neuron , 2001, Brain Research.

[9]  M. Reddington,et al.  Surface imaging microscopy, an automated method for visualizing whole embryo samples in three dimensions at high resolution , 2002, Developmental dynamics : an official publication of the American Association of Anatomists.

[10]  D. Kleinfeld,et al.  All-Optical Histology Using Ultrashort Laser Pulses , 2003, Neuron.

[11]  R. Tsien Breeding molecules to spy on cells. , 2003, Harvey lectures.

[12]  E. Bamberg,et al.  Channelrhodopsin-2, a directly light-gated cation-selective membrane channel , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[13]  F. Del Bene,et al.  Optical Sectioning Deep Inside Live Embryos by Selective Plane Illumination Microscopy , 2004, Science.

[14]  A. Mehta,et al.  In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy. , 2004, Journal of neurophysiology.

[15]  W. Denk,et al.  Serial Block-Face Scanning Electron Microscopy to Reconstruct Three-Dimensional Tissue Nanostructure , 2004, PLoS biology.

[16]  Karel Svoboda,et al.  Subcellular domain-restricted GABAergic innervation in primary visual cortex in the absence of sensory and thalamic inputs , 2004, Nature Neuroscience.

[17]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[18]  Sooyoung Chung,et al.  Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex , 2005, Nature.

[19]  W. Denk,et al.  Deep tissue two-photon microscopy , 2005, Nature Methods.

[20]  W. Denk,et al.  Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing , 2006, Proceedings of the National Academy of Sciences.

[21]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[22]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[23]  S. Hell Far-Field Optical Nanoscopy , 2007, Science.

[24]  Kristina D. Micheva,et al.  Array Tomography: A New Tool for Imaging the Molecular Architecture and Ultrastructure of Neural Circuits , 2007, Neuron.

[25]  R. W. Draft,et al.  Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system , 2007, Nature.

[26]  A. Schierloh,et al.  Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain , 2007, Nature Methods.

[27]  D. Tank,et al.  Imaging Large-Scale Neural Activity with Cellular Resolution in Awake, Mobile Mice , 2007, Neuron.

[28]  T. Holy,et al.  Fast Three-Dimensional Fluorescence Imaging of Activity in Neural Populations by Objective-Coupled Planar Illumination Microscopy , 2008, Neuron.

[29]  A. Borst,et al.  A genetically encoded calcium indicator for chronic in vivo two-photon imaging , 2008, Nature Methods.

[30]  M. Ekstrand,et al.  The alpha-herpesviruses: molecular pathfinders in nervous system circuits. , 2008, Trends in molecular medicine.

[31]  E. Callaway Transneuronal circuit tracing with neurotropic viruses , 2008, Current Opinion in Neurobiology.

[32]  Stefan W. Hell,et al.  Supporting Online Material Materials and Methods Figs. S1 to S9 Tables S1 and S2 References Video-rate Far-field Optical Nanoscopy Dissects Synaptic Vesicle Movement , 2022 .

[33]  G. Knott,et al.  Serial Section Scanning Electron Microscopy of Adult Brain Tissue Using Focused Ion Beam Milling , 2008, The Journal of Neuroscience.

[34]  J. Sanes,et al.  Molecular identification of a retinal cell type that responds to upward motion , 2008, Nature.

[35]  David S. Greenberg,et al.  Visually evoked activity in cortical cells imaged in freely moving animals , 2009, Proceedings of the National Academy of Sciences.

[36]  Mark Bates,et al.  Super-resolution fluorescence microscopy. , 2009, Annual review of biochemistry.

[37]  Ju Lu,et al.  The Interscutularis Muscle Connectome , 2009, PLoS biology.

[38]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[39]  Sreekanth H. Chalasani,et al.  Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators , 2009, Nature Methods.

[40]  N. Nishimura,et al.  Deep tissue multiphoton microscopy using longer wavelength excitation. , 2009, Optics express.

[41]  J. Vivanco To whom correspondence should be addressed , 2009 .

[42]  Stephen J. Smith,et al.  Single-Synapse Analysis of a Diverse Synapse Population: Proteomic Imaging Methods and Markers , 2010, Neuron.

[43]  Bo Huang,et al.  New resolving power for light microscopy: applications to neurobiology , 2010, Current Opinion in Neurobiology.

[44]  Eric Betzig,et al.  Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues , 2010, Nature Methods.

[45]  Lin Tian,et al.  Functional imaging of hippocampal place cells at cellular resolution during virtual navigation , 2010, Nature Neuroscience.

[46]  Srinivas C. Turaga,et al.  Machines that learn to segment images: a crucial technology for connectomics , 2010, Current Opinion in Neurobiology.

[47]  Kevin L. Briggman,et al.  Wiring specificity in the direction-selectivity circuit of the retina , 2011, Nature.

[48]  Arthur W. Wetzel,et al.  Network anatomy and in vivo physiology of visual cortical neurons , 2011, Nature.

[49]  Atsushi Miyawaki,et al.  Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain , 2011, Nature Neuroscience.

[50]  Andreas T. Schaefer,et al.  Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo , 2011, Nature Neuroscience.

[51]  J. Livet,et al.  Generating and imaging multicolor Brainbow mice. , 2011, Cold Spring Harbor protocols.

[52]  Lief E. Fenno,et al.  The development and application of optogenetics. , 2011, Annual review of neuroscience.

[53]  David J. Anderson,et al.  Functional identification of an aggression locus in the mouse hypothalamus , 2010, Nature.

[54]  Adam E. Cohen,et al.  Electrical Spiking in Escherichia coli Probed with a Fluorescent Voltage-Indicating Protein , 2011, Science.