Discontinuous Galerkin Methods for Friedrichs' Systems. I. General theory

This paper presents a unified analysis of discontinuous Galerkin methods to approximate Friedrichs' systems. An abstract set of conditions is identified at the continuous level to guarantee existence and uniqueness of the solution in a subspace of the graph of the differential operator. Then a general discontinuous Galerkin method that weakly enforces boundary conditions and mildly penalizes interface jumps is proposed. All the design constraints of the method are fully stated, and an abstract error analysis in the spirit of Strang's Second Lemma is presented. Finally, the method is formulated locally using element fluxes, and links with other formulations are discussed. Details are given for three examples, namely, advection-reaction equations, advection-diffusion-reaction equations, and the Maxwell equations in the so-called elliptic regime.

[1]  Improved Energy Estimates for Interior Penalty, Constrained and Discontinuous Galerkin Methods for Elliptical Problems Part I. Improved Energy Estimates for Interior Penalty, Constrained and Discontinuous Galerkin Methods for Elliptic Problems , 1999 .

[2]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[3]  C. Dawson Godunov-mixed methods for advection-diffusion equations in multidimensions , 1993 .

[4]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: VI. Convergence analysis of the generalized SUPG formulation for linear time-dependent multi-dimensional advective-diffusive systems , 1987 .

[5]  Franco Brezzi,et al.  Virtual bubbles and Galerkin-least-squares type methods (Ga.L.S.) , 1993 .

[6]  J. Douglas,et al.  Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods , 1976 .

[7]  M. Wheeler An Elliptic Collocation-Finite Element Method with Interior Penalties , 1978 .

[8]  Jean-Luc Guermond,et al.  An Intrinsic Criterion for the Bijectivity of Hilbert Operators Related to Friedrich' Systems , 2007 .

[9]  B. Rivière,et al.  Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. Part I , 1999 .

[10]  J. Oden,et al.  A discontinuous hp finite element method for convection—diffusion problems , 1999 .

[11]  G. A. Baker Finite element methods for elliptic equations using nonconforming elements , 1977 .

[12]  Jean-Luc Guermond,et al.  Subgrid stabilization of Galerkin approximations of linear monotone operators , 2001 .

[13]  P. Raviart,et al.  On a Finite Element Method for Solving the Neutron Transport Equation , 1974 .

[14]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[15]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[16]  I. Babuska The Finite Element Method with Penalty , 1973 .

[17]  T. Hughes,et al.  The Galerkin/least-squares method for advective-diffusive equations , 1988 .

[18]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[19]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[20]  Clint Dawson,et al.  Analysis of an Upwind-Mixed Finite Element Method for Nonlinear contaminant Transport Equations , 1998 .

[21]  Claes Johnson,et al.  Finite element methods for linear hyperbolic problems , 1984 .

[22]  Max Jensen,et al.  Discontinuous Galerkin methods for Friedrichs systems with irregular solutions , 2005 .

[23]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[24]  Jean-Luc Guermond,et al.  Discontinuous Galerkin Methods for Friedrichs’ Systems , 2006 .

[25]  Jeffrey Rauch,et al.  Symmetric positive systems with boundary characteristic of constant multiplicity , 1985 .

[26]  S. Rebay,et al.  A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .

[27]  Kurt Friedrichs,et al.  Symmetric positive linear differential equations , 1958 .

[28]  SwitzerlandPaul HoustonOxford,et al.  Hp-dgfem for Partial Diierential Equations with Nonnegative Characteristic Form , 1999 .

[29]  I. Babuska,et al.  Nonconforming Elements in the Finite Element Method with Penalty , 1973 .

[30]  Bernardo Cockburn Discontinuous Galerkin methods , 2003 .

[31]  Juhani Pitkäranta,et al.  An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation , 1986 .