Codes from Cocycles

We demonstrate that many techniques for generating error-correcting codes are cocyclic; that is, derived from 2-dimensional cocycles or cocyclic matrices. These cocyclic codes include classes of self-dual codes, quasi-twisted codes and, trivially, all the group ring codes and the group codes for the Gaussian channel. We believe this link between algebraic coding theory and low-dimensional group cohomology leads to (i) new ways to generate codes; (ii) a better understanding of the structure of some known codes and (iii) a better understanding of known construction techniques.

[1]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[2]  Roberta Evans Sabin,et al.  On Determining All Codes in Semi-Single Group Rings , 1993, AAECC.

[3]  D. L. Flannery Transgression and the calculation of cocyclic matrices , 1995, Australas. J Comb..

[4]  T. Gulliver New quaternary linear codes of dimension 5 , 1995, Proceedings of 1995 IEEE International Symposium on Information Theory.

[5]  D. Flannery,et al.  Calculation of cocyclic matrices , 1996 .

[6]  Tadao Kasami A Gilbert-Varshamov bound for quasi-cycle codes of rate 1/2 (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[7]  D. Flannery,et al.  Cocyclic Hadamard Matrices and Hadamard Groups Are Equivalent , 1997 .

[8]  Hanfried Lenz,et al.  Design theory , 1985 .

[9]  N. J. A. Sloane,et al.  A new upper bound on the minimal distance of self-dual codes , 1990, IEEE Trans. Inf. Theory.

[10]  Vladimir D. Tonchev Self-orthogonal designs and extremal doubly even codes , 1989, J. Comb. Theory, Ser. A.

[11]  D. Slepian Group codes for the Gaussian channel , 1968 .

[12]  Warwick de Launey On the construction of n-dimensional designs from 2-dimensional designs , 1990, Australas. J Comb..

[13]  G. Mackey Induced representations of groups and quantum mechanics , 1968 .

[14]  Kenneth S. Brown,et al.  Cohomology of Groups , 1982 .

[15]  Ian F. Blake,et al.  The mathematical theory of coding , 1975 .

[16]  Wolf H. Holzmann,et al.  A computer search for complex Golay sequences , 1994, Australas. J Comb..

[17]  Kathy J. Horadam,et al.  A weak difference set construction for higher dimensional designs , 1993, Des. Codes Cryptogr..

[18]  Vladimir D. Tonchev,et al.  Singly-Even Self-Dual Codes and Hadamard Matrices , 1995, AAECC.

[19]  Gregory Karpilovsky,et al.  Projective Representations of Finite Groups , 1985 .

[20]  Alexander Pott,et al.  Finite Geometry and Character Theory , 1995 .

[21]  Alain Poli,et al.  Error correcting codes - theory and applications , 1992 .

[22]  Wieb Bosma,et al.  Computational Algebra and Number Theory , 1995 .

[23]  K. J. Horadam,et al.  Cocyclic Development of Designs , 1993 .

[24]  N. J. A. Sloane,et al.  The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.

[25]  Thomas Beth,et al.  Which Families of Long Binary Lianea Codes Have a Binomial Weight Distribution? , 1995, AAECC.

[26]  Warwick de Launey Generalised Hadamard matrices which are developed modulo a group , 1992, Discret. Math..

[27]  K. J. Horadam,et al.  Generation of Cocyclic Hadamard Matrices , 1995 .

[28]  Kathy J. Horadam,et al.  Cocyclic Hadamard matrices over ℤt × ℤ22 , 1995, Australas. J Comb..